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The renin-angiotensin system (RAS) is an important regulator of cirrhosis and 
portal hypertension. As hepatic fibrosis progresses, levels of the RAS components 
angiotensin (Ang) II, Ang-(1–7), angiotensin-converting enzyme (ACE), and Ang 
II type 1 receptor (AT1R) are increased. The primary effector Ang II regulates va-
soconstriction, sodium homoeostasis, fibrosis, cell proliferation, and inflamma-
tion in various diseases, including liver cirrhosis, through the ACE/Ang II/AT1R 
axis in the classical RAS. The ACE2/Ang-(1–7)/Mas receptor and ACE2/Ang-(1–9)/
AT2R axes make up the alternative RAS and promote vasodilation, antigrowth, 
proapoptotic, and anti-inflammatory effects; thus, countering the effects of the 
classical RAS axis to reduce hepatic fibrogenesis and portal hypertension. Pa-
tients with portal hypertension have been treated with RAS antagonists such as 
ACE inhibitors, Ang receptor blockers, and aldosterone antagonists, with very 
promising hemodynamic results. In this review, we examine the RAS, its roles 
in hepatic fibrosis and portal hypertension, and current therapeutic approaches 
based on the use of RAS antagonists in patients with portal hypertension.
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INTRODUCTION

The renin-angiotensin system (RAS) is a physiological 
regulator of blood pressure, electrolyte balance, and 
fluid homeostasis. However, it is also involved in organ 
dysfunction and chronic tissue damage, via the vaso-
active and profibrotic effects of angiotensin (Ang) II, a 
major effector octapeptide [1], and in the pathogenesis 
of hepatic fibrosis and portal hypertension [2-4]. This re-
view provides an overview of the RAS, its role in hepatic 
fibrosis and portal hypertension, and current therapeu-
tic approaches based on the use of RAS antagonists to 
treat patients with portal hypertension (Fig. 1).

OVERVIEW OF THE RAS

The RAS precursor angiotensinogen and its cleavage en-
zyme, renin, have been extensively detected in normal 
and in injured liver tissue, but their expression does not 
increase immediately after liver injury [5]. Instead, the 
levels of angiotensin-converting enzyme (ACE) and Ang 
II type 1 receptor (AT1R) are remarkably increased after 
liver injury, particularly in fibrotic areas of the injured 
liver tissue and activated hepatic stellate cells (HSCs) 
[5-7]. ACE2 is expressed in healthy liver by endothelial 
cells, bile duct cells, and perinuclear hepatocytes, but 
its high level of expression in the parenchymal tissue of 
diseased livers results in increased expression of Ang-
(1–7), produced from Ang II [8,9]. One cause of portal 
hypertension is an increase in intrahepatic resistance to 
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portal flow, mediated by contraction of the sinusoidal 
vascular bed by HSCs and vascular smooth muscle cells 
[10-12]. HSC activation is facilitated by Ang II. These re-
sults link the RAS to liver fibrosis and portal hyperten-
sion [2-5,13,14], but they also indicate that the RAS can 
be targeted to ameliorate hepatic fibrosis. This has been 
demonstrated in experimental animal models and sug-
gests that a reduction in portal pressure in humans can 
be achieved by suppressing Ang II-mediated intrahepat-
ic vasoconstriction [15-18]. 

As the main effector of the RAS, the potent vasoconstric-
tor Ang I regulates arterial blood pressure and sodium 

homeostasis, but it also acts on cardiovascular processes 
such as remodeling [19]. The aspartyl protease renin, ex-
pressed by the juxtaglomerular apparatus of the kidney, 
converts liver-derived angiotensinogen into Ang I, which 
in turn is converted to Ang II by ACE. ACE2 catalyzes the 
conversion of Ang II to Ang-(1–7). Thus, Ang II levels are 
regulated by the balance between ACE and ACE2. 

The various components of the RAS form two dis-
tinct pathways: the classical pathway, comprising Ang II, 
ACE, and AT1R, and the alternative pathway, comprising 
ACE2, Ang-(1–7), and Ang-(1–7) Mas receptor (MasR). 
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Figure 1. Overview of the renin-angiotensin system (RAS). In the RAS pathways, angiotensin (Ang) II is the main effector reg-
ulating vasoconstriction, sodium homoeostasis, fibrosis, cell proliferation, and inflammation in various diseases, including 
liver cirrhosis, via the angiotensin-converting enzyme (ACE)/Ang II/Ang II type 1 receptor (AT1R) axis, which defines the clas-
sical RAS. Mediators of the alternative RAS have vasodilatory, antigrowth, proapoptotic, and anti-inflammatory properties 
that counterbalance the effects of the classical RAS axis to reduce hepatic fibrogenesis and portal hypertension. Ang II type 2 
receptor (AT2R), Ang-(1–7) Mas receptor (MasR), ACE inhibitor (ACEi), AT1R blocker (ARB), mitogen-activated protein kinase 
(MAPK), Janus kinase (JAK), and signal transducer and activator of transcription (STAT), extracellular signal-regulated kinase 
(ERK), transforming growth factor β1 (TGF-β1), plasminogen activator inhibitor-1 (PAI-1), nitric oxide (NO), NO synthase (NOS), 
α-smooth muscle actin (α-SMA). NADPH, nicotinamide adenine dinucleotide phosphate.
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Classical RAS pathway
Vasoconstriction, sodium homoeostasis, fibrosis, cell 
proliferation, and inflammation are mediated by the 
classical RAS pathway [20-24]. The vasoconstrictor effect 
of Ang II is dependent on AT1R, a G-protein-coupled 
receptor present in most cells types, including the liver 
[25,26]. AT1R stimulates the activation of phospholipases 
A2, C, and D as well as L-type Ca2+ channels while inhib-
iting adenylate cyclase (reviewed in [27,28]). Triggered by 
Ang II, AT1R also induces cell proliferation by activat-
ing tyrosine phosphorylation, phospholipase C-γ, and 
downstream proteins, including mitogen-activated pro-
tein kinases (MAPKs), Janus kinases, and signal trans-
ducer and activator of transcription [23,29,30].

In addition to the classical RAS pathway, the (pro)-re-
nin receptor, the ligands of which are renin and pro-re-
nin, activates the extracellular signal-regulated kinase 
(ERK) 1/2 and p38 pathways, leading to up-regulation of 
profibrotic genes, including those encoding transform-
ing growth factor β1 (TGF-β1), plasminogen activator in-
hibitor-1, collagens, and fibronectin [31,32]. 

Alternative RAS pathway
The alternative RAS pathway, via its components ACE2, 
Ang-(1–7), and MasR, counterbalances the effects of the 
classical RAS pathway. Despite the > 40% homology be-
tween the catalytic domain of ACE and that of ACE2 [33,34], 
the latter removes a single amino acid at the C-terminus 
of Ang I to generate the nonapeptide Ang-(1–9), whereas 
ACE digests a dipeptide to convert Ang-(1–9) to Ang-(1–
7) [34,35]. ACE2 also cleaves Ang II to produce Ang-(1–7), 
with greater efficiency than the conversion of Ang I to 
Ang-(1–9) [36]. In fact, the substrate preference of ACE2 
for Ang II is approximately 400-fold higher than that for 
Ang I [36]. ACE2 is thus representative of a compensatory 
pathway in the RAS [34,37]. Ang-(1–7) and Ang-(1–9), pro-
duced by ACE2, react with MasR and AT2R, respectively 
[38]. MasR is a G-protein-coupled receptor encoded by 
the Mas proto-oncogene [38]. The ACE2/Ang-(1–7)/MasR 
axis counterbalances the effects of the ACE/Ang II/AT1R 
axis, increases vasodilation and the production of nitric 
oxide (NO), inhibits cell proliferation and cardiovas-
cular remodeling, and improves endothelial function 
[39,40]. The ACE/Ang II/AT1R axis is also countered by 
the ACE2/Ang-(1–9)/AT2R axis, which stimulates vasodi-
lation and exerts antigrowth, proapoptotic, and anti-in-

flammatory effects [41,42]. 

THE RAS IN HEPATIC FIBROSIS AND PORTAL 
HYPERTENSION

The hallmarks of cirrhosis are fibrotic septa, regenerat-
ing hepatocyte nodules, hepatic sinusoidal remodeling, 
and capillarization [43,44]. These architectural changes 
are related to increased intrahepatic resistance to portal 
blood flow, resulting in increased portal pressure and 
the development of portal hypertension, the most seri-
ous complication of cirrhosis [45]. Portal blood flow is 
also increased by splanchnic vasodilatation and hyper-
dynamic circulation [46]. Paizis et al. [5] demonstrated 
that ACE and AT1R levels are dramatically upregulat-
ed in the active fiber-forming region of the liver after 
hepatic injury; thus, linking the classical RAS to portal 
hypertension. In addition, ACE and AT1R are highly ex-
pressed by activated HSCs both in vivo and in vitro [6]. 
Upregulation of ACE2 at the gene and protein levels fol-
lowing liver injury in rats and humans implicates the 
alternative RAS in the response to cirrhosis and portal 
hypertension [8]. Herath et al. [9] reported the associa-
tion of alternative RAS activation in chronic liver injury, 
based on the increase in plasma Ang-(1–7) induced by 
the upregulation of ACE2 and Mas as well as the hepatic 
conversion of Ang II to Ang-(1–7). These results clearly 
show that the classical RAS pathway promotes, while the 
alternative pathway antagonizes the progression of cir-
rhosis and portal hypertension.

Role of the RAS in hepatic fibrosis
Sustained and chronic liver disease, caused by hepatitis 
viruses, heavy alcohol use, certain medications, toxins, 
and autoimmune diseases, is characterized by the accu-
mulation of excess extracellular matrix (ECM) proteins 
and changes in liver architecture, followed by the forma-
tion of fibrous scars and cirrhotic nodules [2]. Portal fi-
broblasts, circulating fibroblasts, and bone marrow-de-
rived cells are involved in hepatic fibrogenesis [47], but 
the most pivotal cell type is HSCs, which secrete colla-
gen types I and III [2]. One of the many mechanisms un-
derlying activation of quiescent HSCs after liver damage 
is upregulation of RAS components during liver disease, 
including AT1R/AT2R and MasR, which promote and 
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suppress fibrosis, respectively [5,9,48]. In human liver, 
quiescent HSCs do not express RAS components, nor 
do they release Ang II. However, both in vivo-activat-
ed HSCs isolated from human cirrhotic liver and cul-
ture-activated HSCs isolated from normal human liver 
highly express active renin and ACE and secrete Ang II 
[6]. Acting via AT1R, Ang II stimulates DNA synthesis 
and increases the contraction and proliferation of acti-
vated HSCs [49]. Ang II also mediates the proliferation 
and contraction of HSCs as well as their production of 
ECM via different signaling pathways, including MAPK 
pathways, phosphoinositide/Ca2+ pathway, and the gen-
eration of reactive oxygen species by phosphorylating 
the p47phox subunit of Nox [49-51]. HSCs are activated 
by reactive oxygen species, whereas fibrosis after liver 
injury is ameliorated in p47phox knockout mice [50]. 
In addition, in both activated and quiescent rat HSCs 
exposed to Ang II, the mRNA and protein levels of all 
TGF-β isoforms are upregulated via the ERK1/2- and 
Nox-dependent pathways, but independently of protein 
kinase C [52].

As described above, the alternative RAS axis produces 
antifibrotic effects via the components ACE2, Ang-(1–7), 
and MasR. In a rat model of hepatic fibrosis induced by 
bile duct ligation, the Ang-(1–7) and MasR agonist AVE 
0991 improved fibrosis, reduced the content of hydroxy-
proline, a major component of collagen, and decreased 
the expression of collagen 1A1, α-smooth muscle actin, 
and ACE [53]. These antifibrotic effects were antago-
nized by pharmacological blockade of the MasR, which 
induced significant increases in hydroxyproline and 
total TGF-β1 levels [53-55]. In a mouse model of cirrho-
sis, ACE2, which is upregulated after liver injury [56], 
inhibited hepatic fibrosis via destruction of Ang II and 
production of Ang-(1–7). While the loss of ACE2 activity 
exacerbates experimental hepatic fibrosis, recombinant 
ACE2 attenuates hepatic fibrosis in chronic liver injury 
models, suggesting its therapeutic potential [57]. 

Taken together, these results demonstrate the im-
portant roles played by the classical and alternative RAS 
pathways in promoting and inhibiting fibrosis, as well 
as the therapeutic potential of classical RAS pathway 
antagonists and alternative RAS pathway agonists in pa-
tients with hepatic fibrosis.

Role of the RAS in portal hypertension
Portal hypertension is a major cause of morbidity and 
mortality in patients with cirrhosis. Multiple factors 
contribute to its pathogenesis, including increased in-
trahepatic resistance following increased deposition 
of ECM, distortion of the hepatic vascular architecture 
[2], and splanchnic vasodilation in response to NO pro-
duced by endothelial NO synthase [58-60]. The increased 
vascular tone and ensuing hepatic resistance to portal 
inflow have also been attributed to contraction of the 
sinusoidal vascular bed by activated HSCs and vascular 
smooth muscle cells [11]. Because the activation of HSCs 
during liver injury is induced by Ang II, and activated 
HSCs express Ang II, ACE, and AT1R [5,49], the RAS is a 
key mediator of the pathogenesis of portal hypertension 
in cirrhosis [3,61,62]. 

In addition to increased intrahepatic resistance, the 
systemic and splanchnic vasodilation that characterizes 
cirrhosis reflects a hypo-responsiveness to vasoconstric-
tors such as Ang II, α-adrenergic agonists, and endothe-
lin-1 [63,64]. In contrast to the vasoconstrictor activity of 
Ang II, Ang-(1–7) is a vasodilator [65] whose systemic lev-
els are dependent on ACE2 activity during the progres-
sion of hepatic fibrosis [8,9]. Therefore, increased ACE2 
expression may accelerate the transition from vasocon-
striction to vasodilation in cirrhosis.

RAS ANTAGONISTS FOR THE TREATMENT OF HE-
PATIC FIBROSIS AND PORTAL HYPERTENSION

Following the report of Lebrec et al. [66] showing that 
propranolol, a non-selective β-blocker (NSBB), reduces 
portal venous pressure in patients with cirrhosis, NSBBs 
have become a standard treatment in patients with por-
tal hypertension. NSBBs reduce cardiac output and 
splanchnic blood flow by blocking β-1 and -2 adrenergic 
receptors, resulting in splanchnic vasoconstriction and 
decreased portal pressure [67]. These drugs were also 
shown to reduce the incidence of bleeding (primary pro-
phylaxis) and rebleeding (secondary prophylaxis) in pa-
tients with esophageal varices [68,69]. However, NSBBs 
do not produce optimal responses in all patients; 15% 
of patients do not tolerate NSBBs, and nearly 50% do 
not show a therapeutic reduction in the hepatic venous 
pressure gradient (HVPG < 12 mmHg or a decrease of > 
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20% from baseline) [70,71]. These resistant patients are 
instead treated with nitrates, which increase NO levels 
in the intrahepatic circulation, or with prazosin or clon-
idine, which inhibit α-adrenergic activity; modest re-
ductions in HVPG were achieved in both groups [72-74].

Recently, very promising hemodynamic results have 
been achieved using other therapeutic agents that inhib-
it the RAS (e.g., captopril, losartan, and irbesartan) [75-77]. 
Decreases in portal pressure in patients with cirrhosis 
have been obtained with RAS antagonists such as ACE 
inhibitors (ACEis) and AT1R blockers (ARBs), and aldo-
sterone antagonists (AAs), without adverse events [61,78]. 
Tandon et al. [61] conducted a systematic review and me-
ta-analysis of 19 controlled trials (678 patients) to evalu-
ate the efficacy and safety of RAS antagonists in reducing 
portal pressure. The ARBs and ACEis used in the clini-
cal trials included losartan, candesartan, and irbesartan 
(ARBs) and captopril and enalapril (ACEis) [75-77,79-82]. 
Captopril effectively reduces portal pressure in patients 
with portal hypertension characterized by a low portal ve-
nous velocity [77]. Thus, captopril and other ACEis may be 
useful for treating this subset of patients with increased 
intrahepatic resistance. Encouraging results were also ob-
tained with the AA spironolactone [83,84] and with ARB/
ACEi therapy, in which significant reductions in HVPG 
compared with a placebo were reported [75,76,79,85]. Al-
though greater reductions in HVPG were achieved with 
NSBBs than with ARBs/ACEis, the difference according 
to the pooled individual patient data was not significant 
[77,80]. The HVPG of Child-Pugh class A patients treated 
with ARBs/ACEis or NSBBs decreased by 17% and 21%, 
respectively, whereas there was no significant change in 
the HVPG of Child-Pugh class B/C patients treated with 
ARBs/ACEis (3%) [61]. However, the difference in the 
HVPG between the AA-treated and placebo group was 
significant. While there were no adverse events in any of 
these groups according to Tandon et al. [61], individual 
data obtained from a systematic review and meta-analysis 
of the efficacy and safety of RAS antagonists in reducing 
portal pressure suggested a higher rate of adverse events 
in patients with more advanced liver dysfunction.

The antifibrotic effects of RAS antagonists, including 
ACEis, ARBs, and AAs, have been evaluated in several 
clinical studies [82,86-94]. The benefits of candesartan, 
an ARB, in patients with compensated alcoholic liver fi-
brosis were first reported as part of a well-established 

open-label randomized controlled trial (RCT) [82]. Can-
desartan resulted in significant histological improve-
ments and reduced fibrosis scores, fibrotic areas, and 
α-smooth muscle actin and hydroxyproline levels [82]. 
Zhu et al. [94] conducted a systematic review and me-
ta-analysis of RCTs to assess the efficacy and safety of 
ACEis/ARBs in liver fibrosis. They showed that RAS in-
hibitor therapy significantly lowered both liver fibrosis 
scores and the liver fibrotic area in patients with hepatic 
fibrosis; the good safety profile of these drugs was also 
demonstrated. Taking these results together, the use of 
RAS antagonists, such as ACEis, ARBs, and AAs, may de-
crease portal pressure and ameliorate fibrosis in patients 
with cirrhosis. However, high-quality RCTs using more 
accurate evaluation parameters are needed to confirm 
the effectiveness and safety of RAS antagonists for the 
treatment of hepatic fibrosis and portal hypertension.

CONCLUSIONS

Portal hypertension is a serious complication of cirrho-
sis that increases the morbidity and mortality rates of 
these patients. Several studies have demonstrated the 
role of RAS in the pathogenesis of hepatic fibrosis and 
portal hypertension [2-4], based on elevated levels of sev-
eral RAS components (Ang II, Ang-[1–7], ACE, and AT1R) 
during the progression of hepatic fibrosis [5,6,8,49]. Act-
ing through the ACE/Ang II/AT1R axis (i.e., the classical 
RAS), Ang II is the main effector regulating vasoconstric-
tion, sodium homoeostasis, fibrosis, cell proliferation, 
and the inflammation that accompanies various diseases, 
including liver cirrhosis [20-22,24]. However, the ACE2/
Ang-(1–7)/MasR and ACE2/Ang-(1–9)/AT2R axes, which 
make up the alternative RAS, have vasodilatory, anti-
growth, proapoptotic, and anti-inflammatory properties 
that counterbalance the effects of the classical RAS axis to 
reduce hepatic fibrogenesis and portal hypertension [39-
42,95,96]. Accordingly, the use of classical RAS antagonists 
(ACEi, ARB, and AA) to treat patients with portal hyper-
tension has been examined, with significant and promis-
ing hemodynamic results reported thus far [75,76]. These 
findings suggest that classical RAS pathway antagonists 
and alternative pathway agonists are key pharmacologi-
cal molecules that may offer strategies for treating and 
preventing chronic liver disease and portal hypertension.
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