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INTRODUCTION

Systemic lupus erythematosus (SLE) is an autoimmune 
disease that affects multiple organs and has significant 
mortality. Its etiology is multifactorial and includes 
both environmental and genetic influences. Despite 
considerable progress in research into the pathogenesis 
of SLE, through the use of genetic variant identification, 
murine models, gene expression studies, and epigenetic 
analysis, the exact pathogenesis of SLE remains poorly 
understood [1,2]. Nevertheless, contributions of various 
immunologic abnormalities to the pathogenesis of SLE 
have been confirmed, including the defective clearance 
of apoptotic cells, a loss of tolerance to self-antigens, ab-
errant activation of T- and B-cells, altered cytokine pro-

files, such as those of type I interferon (IFN), the involve-
ment of neutrophilic extracellular traps, and pathogenic 
autoantibody production [3,4]. The serologic hallmark 
of SLE is the production of autoantibodies, which are 
mostly directed against nuclear antigens, including 
double-stranded DNA (dsDNA), small nuclear ribonuc-
leoproteins, and nucleosomes, but also against antigens 
located in the cytoplasm, on the cell surface, and secret-
ed by the cell [1,5].

Renal involvement, characterized by immune com-
plex deposition, inflammation, and scarring of the 
glomeruli and interstitium, is the most common and 
severe clinical manifestation of SLE. However, only a 
few autoantibodies have been found to specifically con-
tribute to the disease-related injury seen in mice and 
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Systemic lupus erythematosus (SLE), an autoimmune disease of unknown etiolo-
gy, is characterized by the production of autoantibodies and end-organ damage. 
Lupus nephritis affects up to 70% of patients with SLE and is the most critical 
predictor of morbidity and mortality. The immunopathogenesis of SLE is com-
plex and most clinical trials of biologics targeting immune cells or their media-
tors have failed to show efficacy in SLE patients. It has therefore become increas-
ingly clear that additional, local factors give rise to the inflammation and organ 
damage. In this review, we describe recent advances in the role of renal resident 
cells, including podocytes, mesangial cells, and epithelial cells, in the pathogene-
sis of lupus nephritis.
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humans, including anti-blood cell antibodies causing 
cytopenia, anti-dsDNA antibodies causing nephritis, 
and anti-phospholipid antibodies causing fetal distress 
[6]. From a clinical perspective, most trials of biologics 
targeting immune cells have failed to show efficacy in 
SLE patients. For example, rituximab, a genetically en-
gineered chimeric monoclonal IgG1-κ antibody target-
ing CD20 on B-cells, was expected to show efficacy in 
SLE patients because it directly targets B-cells, which 
are responsible for autoantibody production. Howev-
er, two large phase III clinical trials did not verify the 
clinical efficacy of rituximab in patients with non-renal 
lupus and lupus nephritis [7,8]. In addition, the use of 
congenic mice has shown that distinct chromosomal re-
gions determine the development of autoimmunity and 
chronic kidney damage [9]. Another study demonstrated 
that SLE patients in clinical remission continue to pro-
duce elevated levels of self-reactive and polyreactive an-
tibodies [10]. These findings suggest that autoimmunity 
and tissue damage are independent processes. Thus, to 
achieve a comprehensive understanding of the patho-
genesis of lupus, greater attention will need to be paid 
to tissue resident cells and the tissue-specific factors in-
volved in the tissue damage process.

Recent evidence supports a direct role for renal res-
ident cells, including podocytes, mesangial cells, and 
tubular epithelial cells, in the development of lupus ne-
phritis. In this review, we provide an overview of the role 
of renal resident cells, and especially podocytes, in the 
pathogenesis of lupus nephritis. 

THE ROLE OF PODOCYTES

Podocytes are highly specialized cells that reside on the 
visceral side of Bowman’s capsule and wrap around glo-
merular capillaries. They are essential components of 
the glomerular filtration apparatus and are critical for 
the maintenance of renal function [11]. By expressing 
markers such as synaptopodin, nephrin, podocin, and 
Wilms’ tumor protein, podocytes play an important role 
in maintaining the integrity of the glomerular filtration 
barrier. Animal and human studies have demonstrated a 
strong correlation between defects in podocyte anchor-
ing and several glomerular abnormalities, verifying the 
role of podocytes in the onset of renal diseases. In ad-

dition, extensive human genetic studies have indicated 
that monogenic mutations in podocyte proteins are as-
sociated with specific renal pathologic phenotypes. This 
capacity of podocyte injury or loss to initiate glomerular 
damage may be related to the development of chronic 
kidney disease [12]. Disruption of the glomerular filtra-
tion barrier allows passage of large molecules through 
the glomerulus, which, together with apoptotic debris, 
can activate tubular interstitial cells and resident den-
dritic cells to initiate the pathways leading to chronic 
inflammatory disease [13].

Immune cell-like features of glomerular podocytes
In addition to helping to maintain the glomerular fil-
tration barrier, podocytes exhibit the properties of im-
mune cells (Table 1) [14-25] and may be involved in adap-
tive immunity. For example, podocytes express CD80, 
which costimulates lymphocytes; mice lacking CD80 
are protected from lipopolysaccharide (LPS)-induced 
nephrotic syndrome, suggesting a link between podo-
cyte CD80 expression and proteinuria [14]. Podocytes 
also express major histocompatibility complex (MHC) 
class II [15] and neonatal Fc receptor, a receptor protein 
of antigen-presenting lymphocytes [16]. Goldwich et 
al. [26] reported that deleting MHC class II exclusively 
on podocytes prevents the induction of experimental 
anti-glomerular basement membrane nephritis. Podo-
cytes ingest the soluble antigens that activate CD4+ T 
cells and cross-present exogenous antigen on MHC 
class I molecules to CD8+ T cells, which suggests that 
podocytes participate in the antigen-specific activation 
of adaptive immune responses [26]. 

Podocytes also express diverse genes required for 
the innate immune response, including those encod-
ing the pattern recognition receptors (PRRs) that sense 
both pathogen-associated molecular patterns and dam-
age-associated molecular patterns (DAMPs). Toll-like 
receptors (TLRs) are the most well-known PRRs. Isolated 
glomeruli express TLR1–TLR9 and TLR11 mRNA, with 
the highest levels of expression being those of TLR3 and 
TLR4 [17]. In vitro treatment of cells with TLR4 ligands, 
such as LPS and fibrinogen, promotes a marked induc-
tion of chemokines [17]. The receptor for advanced gly-
cation endproducts (RAGE) is a PRR involved in several 
innate immune responses. RAGE can use DAMPs, in-
cluding advanced glycation endproducts and high-mo-
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bility group box protein 1, as its ligands. RAGE is ex-
pressed in podocytes and up-regulated in both human 
and mouse glomerular diseases [18]. In a murine model 
of adriamycin-induced glomerulosclerosis, RAGE was 
shown to mediate podocyte injury [19].

In addition, podocytes produce the proinflammato ry  
cytokine interleukin 23 (IL-23) [20], which is a potent stimu-
lator of renal inflammation. IL-23 promotes the differenti-
ation of T-cells into Th17 cells, γδ T-cells, and double-neg-
ative T-cells [27]. The resulting stimulation of neutrophil 
infiltration into the tubular interstitium leads to the estab-
lishment of chronic inflammation.

The role of podocytes in lupus nephritis
Proteinuria is the most important feature of lupus ne-
phritis and its development is associated with podo-
cyte dysfunction. Therefore, the development of lupus 
nephritis likely accompanies podocyte injury. Indeed, 
podocyte injury is common in patients with lupus ne-
phritis, as shown in a large cohort study of patients with 
renal-biopsy-proven lupus nephritis [28]. 

Several lines of evidence support the role of podocytes 
in the pathogenesis of lupus nephritis [14,21-24,29,30]. 
Podocyte expression of costimulatory molecules, such 
as CD80, correlates with the severity of human lupus ne-
phritis [14]. TLR9 is up-regulated within the glomeruli of 
patients with lupus nephritis, but not in normal kidneys 
[24]. Ichinose et al. [22] showed that immunoglobulin G 

(IgG) from lupus nephritis patients enters podocytes, 
where it up-regulates calcium/calmodulin-dependent 
protein kinase IV (CaMK4), which is followed by the in-
creased expression of genes linked to podocyte damage 
and T-cell activation. This finding suggests the targeted 
inhibition of CaMK4 in podocytes as a therapeutic strat-
egy in lupus nephritis [22].

The major component of inflammasomes, Nod-like 
receptor protein 3 (NLRP3), the apoptosis-associated 
protein ASC (apoptosis-associated speck-like protein 
containing a CARD), and caspase 1, are also expressed 
in podocytes [23]. NLRP3-expressing inflammasomes 
are activated in the podocytes of lupus-prone mice, and 
in those of patients with lupus nephritis. In the former, 
the inhibition of NLRP3 ameliorates proteinuria, renal 
histologic lesions, and podocyte foot process effacement 
[21], suggesting that NLRP3 activation is involved in the 
pathogenesis of podocyte injury and in the development 
of proteinuria in lupus nephritis.

 

THE ROLE OF MESANGIAL CELLS 

Mesangial cells are specialized cells in the kidney that 
make up the mesangium of the glomerulus. Together 
with the mesangial matrix, they form the vascular pole 
of the renal corpuscle. The main function of mesangial 
cells is to remove trapped residues and aggregated pro-

Table 1. Immune molecules present in podocytes

Name Function Sources References

CD80 (B7-1) Costimulatory molecule Human, mouse [14]

CD86 Costimulatory molecule Human [22]

CaMK4 T-cell signaling molecule Human [22]

MHC class II Antigen presentation Rat [15]

FcRn Receptor protein in APC Human, mouse [16,22]

TLRs PRR Human, mouse [17,24]

RAGE PRR Human, mouse [18,19]

NLRP3 inflammasome To switch on the inflammatory process Human, mouse [21,23]

IL-23 Proinflammatory cytokine Mouse [20]

IL-6 Proinflammatory cytokine Mouse [25]

CaMK4, calcium/calmodulin-dependent protein kinase IV; MHC, major histocompatibility complex; FcRn, neonatal Fc re-
ceptor; APC, antigen-presenting cell; TLR, Toll-like receptor; PRR, pattern-recognition receptor; RAGE, receptor for advanced 
glycation endproducts; NLRP3, Nod-like receptor protein 3; IL, interleukin.
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tein from the basement membrane; thus, keeping it and 
the glomerular filtration apparatus free of debris [31]. 

Mesangial cells have also been implicated in the 
pathogenesis of lupus nephritis [32]. Studies have shown 
that mesangial cells express TLRs [33,34], and when stim-
ulated with TLR-3 ligand they produce type I IFN [33], 
the major cytokine in the development of SLE. The pro-
duction of type I IFN by renal resident cells, including 
mesangial cells, may aggravate autoimmune kidney dis-
eases [33,35]. Anti-dsDNA antibodies are essential to the 
diagnosis of SLE, and their levels correlate with disease 
activity. Yung et al. [36,37] demonstrated that anti-dsD-
NA antibodies bind to mesangial cells and trigger down-
stream inflammatory and fibrotic pathways, including 
the protein kinase C (PKC) and mitogen-activated pro-
tein kinase (MAPK) signaling pathways, in addition to 
increasing both the secretion of proinflammato ry cyto-
kines and matrix protein deposition, all of which con-
tribute to pathologic processes in the renal parenchyma.

Mesangial cells produce IL-6, and probably addition-
al cytokines, which could independently contribute to 
glomerulonephritis. Mesangial cells lacking CaMK4 
produce decreased amounts of IL-6 [38]. An early study 
showed that IL-6 on its own can drive the development 
of glomerulonephritis [39,40].

THE ROLE OF RENAL TUBULAR EPITHELIAL CELLS

Renal tubular epithelial cells are another type of renal 
resident cell likely to be involved in the pathophysiology 

of lupus nephritis. For example, renal tubular epithelial 
cells produce pathogenic cytokines, including type I IFN 
[41] and B-cell activating factor (BAFF) [42], both of which 
are very important to the development of SLE. BAFF ex-
pression in the kidney of lupus-prone mice correlates 
with disease activity. In biopsies of patients with diffuse 
proliferative lupus nephritis, BAFF expression on tubu-
lar epithelial cells correlates with the histopathological 
activity index [42]. In addition, renal tubular epitheli-
al cells from patients with lupus nephritis express the 
co-stimulatory molecule B7-H4, suggesting the ability 
of these cells to activate T-cells [43]. 

The incubation of renal tubular epithelial cells with 
human anti-dsDNA antibodies leads to the sequential 
up-regulation of tumor necrosis factor α, IL-1β, and IL-6 
[44], indicating a contribution by these cells to inflam-
matory processes in the tubulointerstitium in lupus ne-
phritis.

CONCLUSIONS

Conventional therapy for SLE has been based on 
non-specific immunosuppressants, which have limit-
ed clinical efficacy and cause severe adverse events. As 
our understanding of the immunopathogenesis of SLE 
has progressed, new classes of drugs and biologics that 
target immune cells in patients with this disease have 
been developed. However, their clinical efficacy is un-
satisfactory and none of the biologics has proven to be 
effective in the treatment of lupus nephritis, a common 

Autoimmunity

Real damage

Podocyte dysfunction

Asymptomatic Autoantibodies Proteinuria CKD

Figure 1. Proposed model of the development of lupus nephritis. Autoimmunity persists from the asymptomatic stage to the 
stage marked by chronic kidney disease (CKD). Podocyte dysfunction ,may already occur at an early stage of the kidney damage 
process, ultimately leading to overt proteinuria and CKD. Identification of a common intracellular pathway that mediates not 
only aberrant immune cell activation related to autoimmunity but also podocyte dysfunction, will lead to a better understand-
ing of the pathogenesis of lupus nephritis.
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manifestation and critical determinant in the prognosis 
of SLE patients. 

Given that autoimmunity can occur independently of 
tissue injury mechanisms, it is necessary to understand 
the process that alters resident cell function. Podocytes 
are an essential component of the glomerular filtra-
tion barrier and their dysfunction is directly connected 
with the initiation of glomerulonephritis. Therefore, 
the identification of a common intracellular pathway 
leading to both immune cell aberration and podocyte 
dysfunction will aid in the development of therapeutics 
targeting both immune cells and podocytes in a novel 
and effective therapeutic strategy (Fig. 1).
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