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Biomarkers are playing an increasingly important role in antimicrobial stewardship. Their applications have included use in 
algorithms that evaluate suspected bacterial infections or provide guidance on when to start or stop antibiotic therapy, or 
when therapy should be repeated over a short period (6–12 h). Diseases in which biomarkers are used as complementary 
tools to determine the initiation of antibiotics include sepsis, lower respiratory tract infection (LRTI), COVID-19, acute heart 
failure, infectious endocarditis, acute coronary syndrome, and acute pancreatitis. In addition, cut-off values of biomarkers 
have been used to inform the decision to discontinue antibiotics for diseases such as sepsis, LRTI, and febrile neutropenia. 
The biomarkers used in antimicrobial stewardship include procalcitonin (PCT), C-reactive protein (CRP), presepsin, and in-
terleukin (IL)-1β/IL-8. The cut-off values vary depending on the disease and study, with a range of 0.25–1.0 ng/mL for PCT 
and 8–50 mg/L for CRP. Biomarkers can complement clinical diagnosis, but further studies of microbiological biomarkers are 
needed to ensure appropriate antibiotic selection.

Keywords: Antimicrobial stewardship; Biomarkers; Procalcitonin; C-reactive protein; Presepsin protein

INTRODUCTION

Antimicrobial stewardship is a coordinated intervention de-
signed to guide optimal antibiotic use in terms of the antibi-
otics regimen, dosing, administration route, and treatment 
duration [1]. Among its goals are improvement of clinical 
outcomes, minimization of harms such as microbial resis-
tance and Clostridioides difficile infection, and reductions 
in antimicrobial consumption, cost, and adverse events. 
The core elements of an antimicrobial stewardship program 
(ASP) consist of leadership commitment, an operating sys-
tem, actionable measures, tracking and reporting systems, 
and educational programs [2]. Interventional activities are 
concerned with auditing and feedback, antimicrobial restric-
tion, authorization of antibiotic selection, dosing, treatment 
duration, and administration route, all of which should be 
based on evidence-supported guidelines. Biomarkers can 
serve as an objective indicator of the efficacy of these ac-
tivities. This review examines the biomarkers available for 

antimicrobial stewardship from a physician’s perspective.

BIOMARKERS IN INFECTIOUS DISEASES

Biomarkers (or biological markers) are objective indicators of 
normal biological and pathologic processes or treatment re-
sponses [3]. They serve as diagnostic tools, support disease 
staging, indicate disease prognosis, predict clinical respons-
es, and aid the monitoring of various diseases. In infectious 
diseases, biomarkers are used to facilitate earlier diagnoses, 
identify pathogens, optimize antibiotics, assess treatment 
responses, monitor disease progression, and stratify patients 
according to prognosis and risk [3,4]. Infectious disease 
biomarkers are divided into host-response biomarkers and 
pathogen-specific biomarkers. Host-response biomarkers 
can aid in the decision to initiate or discontinue antibiotics 
in patients with infectious diseases. Reducing unnecessary 
antibiotic exposure and overall antibiotic use can in turn 
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reduce the duration of hospital stay, adverse events, and 
overall hospitalization costs. 

Host-response biomarkers include procalcitonin (PCT) and 
C-reactive protein (CRP). PCT is a precursor of calcitonin, 
the hormone produced by parafollicular cells in the thyroid 
and by neuroendocrine cells in the lungs and intestines [5]. 
PCT production is upregulated hours after an increase in the 
levels of proinflammatory markers, including tumor necrosis 
factor-alpha, interleukin (IL)-1, and IL-6 [6]. PCT is widely 
used as a biomarker in diagnosing and predicting bacterial 
infections, including pneumonia and sepsis, and in measur-
ing disease severity [6-8]. CRP, an acute-phase reactant, is 
synthesized primarily by hepatocytes in response to IL-6 [9]. 
Increased levels of CRP occur in bacterial and other infec-
tions, as well as noninfectious causes of inflammation, and 
may reflect infection severity [10]. As a biomarker, CRP is 
used in diagnostic settings, to evaluate disease severity, and 
to predict outcomes of bacterial infections, including pneu-
monia and sepsis [11,12].

Pathogen-specific biomarkers specify the causative in-
fectious organisms and thus support the selection of nar-
row-spectrum antibiotics to target the causative strain. 
Reducing the use of broad-spectrum antibiotics can help 
prevent colonization by multidrug-resistant organisms and 
lower the risk of adverse antibiotic effects, thereby reducing 
the length of hospital stays and medical costs. The classic 
pathogen-specific biomarkers consisted of direct antigen 
tests but they have largely been replaced by microbial nu-
cleic acid methods.

BIOMARKERS IN ANTIMICROBIAL 
STEWARDSHIP GUIDELINES

Several guidelines refer to the role of biomarkers in anti-
microbial stewardship. According to the Society for Health-
care Epidemiology of America guideline, biomarkers can be 
used for antibiotic discontinuation, and PCT can be used in 
patients in the intensive care unit (ICU) with bacterial infec-
tion or sepsis [1,13]. Japan proposed a PCT-guided algo-
rithm as an indicator in antimicrobial stewardship [14] to 
evaluate whether patients with respiratory infections and 
sepsis should be admitted to the ICU or undergo PCT test-
ing during the initial clinical assessment. The results showed 
that antibiotics can be started or stopped based on a PCT 
cut-off of 0.25 outside the ICU and 0.5 for sepsis.

Korea developed the first guideline for antimicrobial stew-
ardship in 2021 [15]. The guideline states that biomarkers 
can be used to discontinue antibiotics. Subsequent guide-
line suggests a consensus algorithm for PCT use in clinical 
antimicrobial stewardship [16], in which antibiotics can be 
started or stopped based on PCT levels when an infectious 
disease is suspected. The cut-off for PCT is 0.5 µg/L in pa-
tients with sepsis and 0.25 µg/L in those with respiratory 
tract infections. 

BIOMARKERS INFORMING ANTIBIOTIC USE 
AND DISCONTINUATION

Many patients in the ICU or wards, as well as those in out-
patient settings, are suspected of having infectious diseases. 
Biomarkers can help determine when to start antibiotics in 
patients with acute respiratory infection, acute heart failure 
(HF), acute exacerbation of chronic obstructive pulmonary 
disease (COPD), acute pancreatitis (AP), pneumonia, or sep-
sis. Several biomarker studies have provided a reference for 
antimicrobial stewardship. The findings of randomized con-
trolled trials (RCTs) evaluating the roles of PCT and CRP in 
antibiotic stewardship are summarized in Tables 1 and 2, 
respectively.

When to start antibiotics in patients with 
suspected bacterial infection

Sepsis: PCT
The PRORATA trial recommends measuring PCT levels at the 
start of antibiotics administration and 6–12 hours after with-
holding antibiotics in ICU patients with sepsis. Antibiotics 
should be started in patients with PCT levels ≥ 0.5 µg/L, with 
a strong recommendation for starting antibiotics in those 
with PCT levels ≥ 1.0 µg/L [17]. For patients in the PRORATA 
trial, the PCT-guided group had significantly lower rates of 
antibiotic use than the control group (11.6 vs. 14.3 days; 
absolute difference = 2.7 days; 95% confidence interval [CI] 
1.4–4.1; p < 0.0001), but there was no statistically signif-
icant difference in mortality, either at 28 days (20.4% vs. 
21.2%; absolute difference = 0.8%; 90% CI -4.6 to 6.2) 
or 60 days (26.1% vs. 30.0%; absolute difference = 3.8%; 
90% CI -2.1 to 9.7).

A Belgian RCT evaluated the effectiveness of PCT-guid-
ed antibiotic treatment [18], with PCT levels measured in 
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patients with suspected sepsis who were admitted to the 
ICU and started on antibiotics at a PCT ≥ 0.5 µg/L. In the 
PCT-guided group, there was a higher likelihood of with-
holding antibiotics than in the non-PCT-guided group (46% 
vs. 32.7%, p = 0.15). The duration of antibiotic administra-
tion in the PCT-guided group did not differ from that in the 
control group (62.6% vs. 57.7%, p = 0.11), and there was 
no difference in antibiotic consumption between groups. 
The area under the receiving operating curve (AUROC) of 
the PCT level to differentiate infection was 0.69. However, 
biomarker-related studies examining when to start antibi-
otics in patients with suspected sepsis are limited. Overall, 
PCT-induced antibiotic use in sepsis was shown to signifi-
cantly reduce antibiotic use but there were no improve-
ments in clinical outcomes, including mortality.

Lower respiratory tract infection (LRTI): PCT and 
CRP
In the ProHOSP study, PCT was measured in patients with 
suspected LRTI to determine whether to administer antibi-
otics [19]. The PCT-guided algorithm recommended start-
ing antibiotics in those with PCT levels > 0.25 µg/L mea-
sured within 1 hour of admission. The effectiveness of 
PCT-guided treatment was evaluated in patients with com-
munity-acquired pneumonia (CAP), COPD exacerbation, or 
acute bronchitis, in addition to the overall population. The 
duration of antibiotic exposure was lower in all PCT-tested 
patients than in non-tested patients (5.7 vs. 8.7 days; rela-
tive change, -34.8%; 95% CI -40.3% to -28.7%) and all 
subgroups. Antibiotic-related adverse events were also rarer 
in the PCT group. Clinical outcomes, including death, ICU 
admissions, and recurrence, did not differ between the two 
groups.

The proCAP study measured PCT before antibiotics were 
started in patients hospitalized with CAP and compared the 
results with those obtained in the usual-practice group [20]. 
Antibiotics were considered for patients with a PCT level  
≥ 0.25 µg/L at the time of diagnosis. If antibiotics were not 
administered, PCT levels were measured again after 6–12 
hours. The rate of antibiotic prescription was 85% in the 
PCT-guided group and 99% in the usual-practice group  
(p < 0.001). The clinical success rates of the two groups 
were similar (84% vs. 82%, p = 0.65).

A Chinese RCT evaluated PCT-guided treatment in pa-
tients with suspected CAP and recommended starting an-
tibiotics for those with PCT levels > 0.25 µg/L [21]. If antibi-

otics were not started, PCT testing was repeated after 6–12 
hours. The rate of antibiotics prescription on admission was 
84.4% in the PCT group, which was significantly lower than 
in the control group (97.5%, p = 0.004). The 4-week treat-
ment success rate did not differ between the two groups 
(85.2% vs. 88.9%; absolute difference, -3.7; 95% CI -14.1 
to 6.7).

Several studies have used CRP point-of-care testing 
(POCT) to assess the effects of prescribing antibiotics in pa-
tients with suspected respiratory tract infections in primary 
care settings. The IMPAC3T study in the Netherlands eval-
uated the effectiveness of providing general practitioners 
with training in communication skills and CRP POCT to 
aid antibiotic prescriptions [22]. The antibiotic prescription 
rate for suspected LRTI was significantly lower in the group 
trained in communication skills than in the group without 
training (27% vs. 54%, p < 0.01). It was also significantly 
lower in the group trained in CRP POCT than in the non-
trained group (31% vs. 53%, p = 0.02). The GRACE (Ge-
nomics to Combat Resistance Against Antibiotics in Com-
munity-acquired LRTI in Europe) consortium evaluated the 
effectiveness of CRP POCT and enhanced communication 
skills in primary care settings [23]. Training in CRP POCT sig-
nificantly reduced antibiotic prescriptions compared to the 
control (33% vs. 48%; adjusted risk ratio [RR], 0.54; 95% 
CI 0.42–0.69). The combination of CRP POCT and enhanced 
communication skills resulted in significantly lower prescrip-
tion rates (RR, 0.53; 95% CI 0.36–0.74; p < 0.0001). A 
meta-analysis showed that CRP POCT applied to antibiotic 
prescriptions in primary care patients with suspected acute 
respiratory infection significantly reduced antibiotic pre-
scriptions compared to controls (397 vs. 516 prescriptions 
per 1,000; RR, 0.77; 95% CI 0.69–0.86).

CRP was also evaluated when LRTI was suspected in nurs-
ing home residents. The UPCARE study of nursing home 
populations in the Netherlands reported the effectiveness of 
CRP POCT when LRTI was suspected [24]. The CRP-guided 
group had a significantly lower antibiotic prescription rate 
than the control group (53.5% vs. 82.3%; hazard ratio 
[HR], 4.93; 95% CI 1.91–12.73). Clinical outcomes, includ-
ing the 3-week complete recovery rate, all-cause mortality, 
and hospitalization rates, did not differ between the groups.

Overall, PCT-guided antibiotic use reduces antibiotic ex-
posure and antibiotic-related adverse events in patients with 
CAP, exacerbated COPD, or acute bronchitis. It does not im-
prove clinical outcomes compared with controls. Similarly, 
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CRP testing in ASPs reduces the overall number of antibiotic 
prescriptions but does not alter clinical outcomes, including 
mortality.

COVID-19: PCT and CRP
COVID-19 guidelines do not address the use of biomarkers 
in antibiotic stewardship, nor does The National Institute for 
Health and Care Excellence recommend the routine use of 
PCT for antibiotic stewardship in COVID-19 patients [25]. 

In a multicenter observational study performed in the 
Netherlands, PCT-guided antibiotic treatment significantly 
reduced antibiotic prescriptions in patients with COVID-19 
[26]. Among patients admitted with COVID-19, antibiotics 
were considered in the PCT-guided group when the PCT 
level measured within 24 hours after admission was ≥ 0.25 
µg/L. The rates of 1-week antibiotic administration (26.8% 
vs. 44.7%, p < 0.001) and total antibiotic administration 
(35.2% vs. 54.5%, p < 0.001) were lower in the PCT-guid-
ed group than in the usual care group. The rates of 30-day 
mortality, 90-day mortality, hospital stay, and ICU admission 
also differed between the two groups.

In the UK, ASPs include the measurement of PCT in pa-
tients admitted to the hospital with SARS-CoV-2, with anti-
biotic discontinuation considered in those with a PCT level 
< 0.25 ng/L [27]. PCT contributed to antibiotics discontinua-
tion in 32% of patients and reduced the antibiotic prescrip-
tion rate from 70% to 36.5%. A retrospective cohort study 
also performed in the UK evaluated the effectiveness of 
antimicrobial stewardship and recommended antibiotic dis-
continuation in COVID-19 patients with a PCT level ≤ 0.25 
ng/mL measured within 48 hours of hospitalization [28]. In 
the PCT-negative group, the median duration of antibiot-
ic use was shorter than in the PCT-positive group (2 vs. 5 
days, p < 0.001), as was the defined daily dose (DDD) (0.14 
vs. 0.37, p < 0.001). Patients in the PCT-negative group 
were three times less likely to be treated with carbapenem 
than were those in the PCT-positive group. The PCT-neg-
ative group had lower rates of mortality (28% vs. 36%,  
p = 0.021) and ICU admission (9% vs. 19%, p = 0.007) than 
the PCT-positive group.

In a single-center retrospective study performed in the UK, 
PCT was evaluated according to the presence or absence 
of secondary bacterial infection in patients with COVID-19 
who were admitted to the ICU [29]. Median PCT levels did 
not differ between patients with and without secondary 
bacterial infection (0.18 vs. 0.235, p > 0.05). Median CRP 

and white blood cell (WBC) levels also did not differ be-
tween these groups. 

A retrospective study performed in Belgium, which en-
rolled patients with COVID-19 who had been admitted to 
the ICU, examined the association of PCT measured within 
48 hours of hospital admission with bacterial co-infection 
[30]. The AUROC for PCT as a predictor of bacterial co-infec-
tion was 0.68 but that for 30-day mortality was 0.77, with 
significant differences between survivors and non-survivors. 
PCT was shown to be a biomarker of COVID-19 severity 
rather than bacterial co-infection. In other studies, PCT was 
associated with COVID-19 severity, disease progression, and 
mortality, regardless of bacterial co-infection [31-33]. Mea-
suring PCT levels in patients with COVID-19 may help de-
termine whether antibiotics should be initiated for bacterial 
co-infection, but the levels may also be elevated in patients 
with severe COVID-19. Clinical decisions should therefore 
be based on clinical features or other biomarkers.

No RCT has evaluated the role of CRP alone in antimi-
crobial stewardship. A retrospective study reported AU-
ROC values for CRP and PCT of 0.86 (p < 0.001) and 0.88  
(p < 0.001), respectively, in predicting secondary bacterial 
infection in patients with COVID-19 [34]. Another study 
of COVID-19 patients suggested that PCT levels should be 
measured heterogeneously in those with high CRP values. 
In the PCT < 0.5 ng/mL group, a low CRP had a negative 
predictive value and predicted hospital admission in 97.6% 
of cases. CRP determination in this setting can be used as a 
supplementary biomarker to PCT [35].

PCT and CRP may not be increased in COVID-19 patients 
treated with dexamethasone and tocilizumab, even in those 
with a secondary bacterial infection [36]. PCT is an indica-
tor of infection severity; it cannot be used to discriminate 
between bacterial and viral infections. Overall, PCT-guided 
antibiotics in COVID-19 patients can result in a decrease in 
antibiotic use. While PCT has limited accuracy in diagnosing 
bacterial co-infection in COVID-19 patients, bacterial co-in-
fection can be diagnosed by measuring CRP in combination 
with PCT.

Exacerbation of COPD/asthma: PCT and CRP
Antibiotics are frequently prescribed to treat exacerbated 
COPD or asthma, as the symptoms are similar to those of 
pneumonia. A multinational RCT evaluated the role of PCT 
in the decision to start antibiotics in patients with exacer-
bated COPD [37]. Antibiotics were recommended for those 
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with PCT levels > 0.25 µg/L, with a repeat PCT measure-
ment performed after 6–24 hours if antibiotics were with-
held. The PCT-guided group had a significantly lower rate 
of antibiotic prescriptions than the group receiving standard 
therapy (40% vs. 72%, p < 0.0001). Neither clinical out-
comes nor an improvement in the forced expiratory volume 
in one second at 14 days and 6 months differed between 
the two groups.

A Swiss RCT evaluated the effectiveness of PCT-guided 
antibiotic administration in patients with suspected LRTI in 
a COPD subgroup [38]. In the PCT-guided group, adminis-
tered antibiotics if their PCT level was ≥ 0.25 µg/L, the an-
tibiotic prescription rate was significantly lower than in the 
standard-of-care group (38% vs. 87%, p = 0.001). COPD 
exacerbation and hospital readmission rates did not differ 
between the two groups. A meta-analysis evaluated the 
effectiveness of PCT-guided antibiotic administration (both 
antibiotic initiation and discontinuation) in patients with ex-
acerbated COPD [39]. The results showed a lower antibiotic 
prescription rate (RR, 0.56; 95% CI 0.43–0.73) among pa-
tients with PCT guidance but no difference in clinical out-
comes, including hospital stay, exacerbation of the recur-
rence rate, and mortality, compared to the control group.

A multicenter RCT performed in the UK evaluated the 
effectiveness of measuring CRP POCT in patients with ex-
acerbated COPD. Antibiotics were administered to those 
with CRP levels ≥ 20 mg/L [40]. The CRP-guided group had 
a lower antibiotic prescription rate than the control group 
(57.0% vs. 77.4%; adjusted odds ratio [OR], 0.31; 95% CI, 
0.20–0.47). The total Clinical COPD Questionnaire score 
at 2 weeks was also lower in the CRP-guided group (-0.19 
points; 90% CI, -0.33 to -0.05). A prospective observational 
study performed in the UK measured PCT and CRP levels in 
patients with exacerbated COPD or asthma and suspected 
pneumonia [41]. The AUROCs of CRP and PCT for distin-
guishing pneumonia from COPD exacerbation were 0.96 
and 0.93, respectively. At a CRP cut-off for starting antibi-
otics of > 48 mg/L, the sensitivity for pneumonia diagnosis 
was 91%, and the specificity was 93%. Overall, PCT- and 
CRP-guided antibiotic use reduced overall antibiotic expo-
sure, without differences in hospital stay, recurrent exacer-
bation, or mortality, in patients with COPD/asthma exacer-
bation.

Acute HF: PCT
Patients with acute HF may show symptoms and X-ray ab-

normalities similar to those of patients with pneumonia. 
Biomarkers can help determine whether antibiotics, which 
are commonly misused in acute HF, are warranted. The 
BACH trial evaluated the role of biomarkers in differentiat-
ing between pneumonia and noninfectious diseases, such 
as COPD and acute HF, in patients who visited the hospital 
with dyspnea [42]. The AUROC for diagnosing pneumonia 
based on PCT alone was 0.723 (p < 0.0001), which was 
higher than that of WBCs (0.69). When PCT and clinical 
signals, including X-ray findings, were evaluated togeth-
er, the AUROC for the diagnosis of pneumonia increased 
to 0.863. Among patients with acute HF and a PCT level  
> 0.21 ng/mL, 5.1% were diagnosed with pneumonia, and 
33% required antibiotic treatment during follow-up. Antibi-
otics were not administered to 32% of the patients with a 
PCT > 0.5 ng/mL, which indicates limitations of diagnosing 
bacterial co-infection in patients with acute HF based solely 
on biomarkers such as PCT.

In the large cohort of HF patients in the PROTECT study, 
the characteristics of those with a PCT > 0.2 ng/mL (high-
PCT) or < 0.2 ng/mL (low-PCT) were compared with those 
of patients with acute HF and bacterial infection [43]. In the 
high-PCT group, there was a statistically significant associ-
ation of a high PCT level with lower serum albumin and 
hemoglobin levels, and with higher WBC, CRP, and blood 
urea nitrogen levels, suggesting an association of a high PCT 
level with bacterial infections in patients with HF. Despite 
the similar severity of HF between the two groups, the high 
PCT group had a higher 30-day all-cause mortality risk (HR, 
2.3; 95% CI 1.3–4.2; p = 0.005). Overall, PCT was shown 
to have limited accuracy for diagnosing bacterial infection in 
patients with acute HF, given that it can also increase with 
increasing overall mortality.

Infective endocarditis (IE): PCT and CRP
A prospective cohort study performed in Switzerland eval-
uated the roles of PCT and CRP as diagnostic biomarkers in 
patients with suspected IE [44]. The AUROCs for PCT and 
CRP in the diagnosis of IE were 0.856 and 0.657, respec-
tively. When the PCT cutoff for IE diagnosis was set to 2.3  
ng/mL, the sensitivity was 81%, and the specificity was 
85%. The study also included infections other than IE. 
However, PCT was highest in patients with IE (median, 6.56  
ng/mL), followed by non-IE bacterial infection (median, 1.06 
ng/mL) and viral infection (median, 0.07 ng/mL). The medi-
an PCT value in patients with IE caused by Staphylococcus 
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aureus was higher than that in patients with S. aureus sepsis 
(median, 4.81 vs. 1.06 ng/mL; p = 0.021).

In a meta-analysis of the roles of PCT and CRP in diagnos-
ing patients with suspected IE [45], the AUROCs of PCT and 
CRP for the diagnosis of IE were 0.71 and 0.80, respectively, 
indicating a higher accuracy of CRP than PCT. The PCT cut-
off values in several studies were 0.19–0.64 ng/mL, and the 
CRP cut-off value was 10.6 mg/L. The role of biomarkers 
in the diagnosis of IE is thus limited, and the cut-off values 
that distinguish bacterial IE from nonbacterial endocarditis 
remain poorly defined. Overall, PCT and CRP have no clear 
role as biomarkers in the diagnosis of IE, although the levels 
of both biomarkers tend to be higher in patients with IE 
than in those with other bacterial infections.

Acute coronary syndrome (ACS)/cardiac arrest: 
PCT
The role of biomarkers in distinguishing bacterial co-infec-
tion in patients with acute myocardial infarction or cardiac 
arrest is limited. PCT was measured in patients with ACS 
and cardiogenic shock. Virtually all patients with cardiogenic 
shock, 33% of those with ST-elevation myocardial infarc-
tion, and 8% of those with non-ST elevation myocardial in-
farction/unstable angina had PCT levels > 0.5 ng/mL [46]. In 
another study, the PCT levels of patients with ACS without 
complications were mostly < 0.5 µg/L, but they increased to 
5.24 µg/L in patients with cardiac arrest, cardiogenic shock, 
or concomitant bacterial infection, suggesting an elevated 
PCT during systemic inflammatory responses [47]. Several 
studies have examined the role of biomarkers in differen-
tiating bacterial infection from cardiovascular disorders in 
patients with dyspnea, but the evidence supporting their 
use remains limited [48]. Further research is warranted to 
determine the role of biomarkers in patients with ACS/car-
diac arrest.

Acute pancreatitis: PCT
The proCAP study was an RCT conducted in the UK that 
evaluated the effectiveness of a PCT-guided algorithm rec-
ommending antibiotic administration for patients with AP 
and PCT levels ≥ 1.0 ng/mL [49]. The algorithm also recom-
mended discontinuation of antibiotics for those with PCT 
levels < 1.0 ng/mL on days 4 and 7 after admission. The 
PCT-guided algorithm reduced antibiotic prescriptions com-
pared to the usual care group (45% vs. 63%; risk difference 
[RD], -15.6%; 95% CI -27.0 to -4.2; p = 0.0071). All-cause 

mortality and hospital-acquired infection rates did not differ 
between the two groups.

Another study, conducted in Singapore, evaluated the ef-
fectiveness of PCT-based guidelines in patients with AP [50]. 
The guidelines recommended measuring PCT in patients 
with severe AP and starting antibiotics in those with PCT 
levels ≥ 0.5 ng/L. If PCT decreased every other day, antibi-
otics were recommended for 10–14 days. The PCT-guided 
group had a significantly shorter antibiotic duration than the 
standard-of-care group (3.3 vs. 6.3 days, p < 0.001), while 
clinical outcomes, including 30-day mortality, were similar. 
A meta-analysis indicated that PCT can aid in the diagno-
sis of severe AP, but not bacterial co-infection, in patients 
with AP (AUC, 0.89; sensitivity, 0.80; specificity, 0.84) [51]. 
Overall, PCT-guided antibiotic use in AP patients significant-
ly reduced antibiotic use, with no improvement in clinical 
outcomes, including mortality.

When to stop antibiotic administration 

Sepsis: PCT, CRP, and presepsin
The PRORATA trial recommended stopping antibiotics if PCT 
levels decrease from their peak concentration by ≥ 80% or 
are < 0.5 µg/L [17]. PCT-guided treatment at antibiotic ini-
tiation and discontinuation in acutely ill patients in the ICU 
reduced the duration of antibiotic administration. However, 
the 28- and 60-day mortality rates did not significantly differ 
compared to the control group. The SAPS trial recommend-
ed measuring PCT daily and stopping antibiotics in patients 
with a PCT level ≤ 0.5 μg/L or ≤ 20% decrease compared to 
the baseline [52]. The duration of antibiotic administration 
was shorter in the PCT-guided group than in the standard-
of-care group (6 vs. 7 days, p = 0.0001).

The PROGRESS trial recommended stopping antibiot-
ics in sepsis patients with PCT levels ≤ 0.5 μg/L or with a  
≥ 80% reduction after treatment day 5 [53]. In that study, 
PCT-guided antibiotic cessation shortened the antibiotic 
treatment duration compared to the control group (5 vs. 
7 days, p < 0.001), with better results in the former with 
respect to infection-associated adverse events (7.2% vs. 
15.3%, p = 0.045), 28-day mortality (15.2% vs. 28.2%,  
p = 0.02), and hospitalization costs.

In a multicenter RCT performed in the Netherlands, PCT 
was measured daily in critically ill patients with suspected 
sepsis who were started on antibiotics. Antibiotic treatment 
was discontinued if PCT levels were ≤ 0.5 µg/L or decreased 
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by 80% from their peak level [54]. In the PCT-guided group, 
antibiotic use was shortened compared to the standard-of-
care group, from 7 to 5 days, and median antibiotic con-
sumption was reduced from 9.3 to 7.5 DDDs. The 28-day 
mortality rate was lower in the PCT-guided group than in 
the standard-of-care group (20% vs. 27%, p = 0.0122). 
CRP and PCT were measured in that study, and no signifi-
cant differences in CRP levels were found between the two 
groups.

In the SISPCT trial, a PCT-guided algorithm was applied 
in patients with severe sepsis or septic shock [55]. PCT was 
measured at baseline and on days 4, 7, 10, and 14. Antibi-
otic discontinuation was recommended in patients with PCT 
levels ≤ 1.0 on day 7 and in those with a > 50% decrease 
on day 4. The duration of antibiotic administration in the 
PCT-guided group did not differ from that in the control 
group at day 7, but antibiotic exposure in the former was 
reduced by 4.5%. The 28-day mortality rate did not differ 
significantly between the two groups (25.6% vs. 28.2%,  
p = 0.34).

An RCT conducted in Germany evaluated the effective-
ness of PCT-guided antibiotic therapy in patients with sepsis 
admitted to surgical ICUs [56]. Antibiotic discontinuation 
was recommended when the PCT level, measured upon 
the improvement of clinical symptoms, was < 1 ng/mL or 
had decreased by 25–35% from the initial level over 3 days. 
The duration of antibiotic administration was shorter in the 
PCT-guided group than in the standard-of-care group (5.9 
vs. 7.9 days, p < 0.001). Neither the daily Sequential Organ 
Failure Assessment (SOFA) score nor the CRP or IL-6 levels 
differed significantly between the two groups.

A meta-analysis of 15 studies found that PCT-guided anti-
biotic management in critically ill patients reduced antibiotic 
use by 1.26 days and short-term mortality by 13% [57]. A 
prospective cohort study conducted in Canada evaluated 
an ASP, including a biomarker-guided clinical decision sup-
port system [58]. PCT was measured daily in ICU patients 
with sepsis who were receiving antibiotic treatment. Anti-
biotics were discontinued in those with a PCT level < 0.25  
ng/mL or a 90% decrease from the baseline level. Antibi-
otics were continued if the PCT level was > 1 ng/mL or in-
creased over time. The PCT-guided antibiotic management 
system reduced overall antibiotic use by 7.3% (p = 0.010), 
with no difference in hospital mobility, clinical outcome, or 
length of ICU stay compared to the control.

A Brazilian RCT of ICU patients receiving antibiotic treat-

ment for sepsis evaluated the effectiveness of an algorithm 
for stopping antibiotics if the baseline CRP level on day 3 or 
5 was < 35 mg/L or there was a > 50% decrease in the CRP 
level [59]. The duration of antibiotic use was 1 day shorter 
in the CRP-guided group than in the control group (6 vs. 7 
days, p = 0.011) whereas the 28-day mortality rate (28.1% 
vs. 22.7%, p = 0.480) and ICU mortality rate (18.8% vs. 
18.2%, p = 0.933) were not significantly different.

Another multicenter RCT study conducted in Brazil com-
pared PCT- and CRP-guided antibiotic treatment at the time 
of antibiotic discontinuation in patients with sepsis [60]. 
Antibiotic discontinuation was recommended on treatment 
day 4 or 5 in those with PCT levels < 0.1 ng/mL and a 90% 
decrease from baseline, as well as CRP levels of < 25 mg/L 
or a 50% decrease from baseline. The median duration of 
antibiotic therapy was shorter in the CRP group than in the 
PCT group (6 vs. 7 days, respectively, p = 0.06), with no 
differences in 28-day mortality (33.3% vs. 32.7%, respec-
tively, p = 1.000) or hospital mortality (46.7% vs. 42.9%, 
respectively, p = 0.836). 

An Egyptian RCT compared the decision to discontinue 
antibiotics in patients with sepsis who were admitted to the 
ICU based on PCT versus CRP levels on days 4 and 7 [61]. 
The cut-off for antibiotic discontinuation was a PCT level  
< 0.5 ng/mL or a ≥ 80–90% decrease from baseline, and 
a CRP level < 8.7 mg/L or a ≥ 50% decrease from base-
line. The antibiotic discontinuation rate on day 4 was 6% in 
the CRP-guided group and 23% in the PCT-guided group  
(p = 0.07), and the antibiotics saving after antibiotic discon-
tinuation on day 4 was 6 days in the CRP group and 30 
days in the PCT group (p = 0.005). The 28-day mortality 
rate was 65.2% in the CRP-guided group and 34.8% in the 
PCT-guided group (p = 0.063). 

Presepsin, a novel biomarker in antimicrobial stewardship, 
is a soluble form of CD14 with a broad-spectrum affinity 
for the innate immune system that has been shown to sup-
port pathogen recognition [62,63]. Presepsin levels begin 
to increase 2 hours after infection and peak 3 hours later, 
suggesting a role for presepsin as an early biomarker for 
sepsis diagnosis [64]. A multicenter prospective cohort trial 
conducted in China evaluated the effectiveness of presep-
sin for antibiotic discontinuation in patients with sepsis [65]. 
Presepsin levels were measured at baseline and every oth-
er day. In the presepsin-guided group, discontinuing anti-
biotics was recommended in patients with presepsin levels  
< 350 pg/mL or a ≥ 80% decrease from the peak level mea-
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sured twice consecutively. The number of days without an-
tibiotics was higher in the presepsin-guided group than in 
the control group (14.64 vs. 11.00 days, p < 0.001), with no 
difference in mortality between the two groups either at 28 
days (17.7% vs. 18.2%, p = 0.868) or 90 days (19.9% vs. 
19.5%, p = 0.891).

Overall, PCT- and CRP-guided antibiotic discontinuation 
reduces overall antibiotic exposure without improving clini-
cal outcomes such as mortality. Presepsin-induced antibiotic 
discontinuity was shown to reduce overall antibiotic use but 
also did not impact clinical outcomes, including mortality.

LRTI: PCT and IL-1β/IL-8
The above-mentioned ProHOSP study also evaluated the ef-
fect of PCT-guided antibiotic management on antibiotic dis-
continuation in patients with LRTI [19]. PCT was measured 
on days 3, 5, and 7 of antibiotic treatment. Antibiotics were 
discontinued in patients with PCT levels ≤ 0.25 µg/L or a  
≥ 80% decrease from the peak level. The PCT-guided group 
had significantly reduced antibiotic use compared to the 
control group. There were no differences in mortality com-
pared to the CAP, exacerbated COPD, and acute bronchitis 
subgroups. 

The ProCAP study also evaluated the PCT-guided clini-
cal decision to discontinue antibiotics in patients with CAP 
[20]. PCT was measured on days 4, 6, and 8, with antibiotic 
discontinuation recommended in patients with PCT levels 
< 0.25 µg/L or a 10% decrease in the baseline PCT level  
≥ 10 µg/L. The median duration of antibiotic use was 7 days 
shorter in the PCT-guided group than in the control group 
(5 vs. 12 days, p < 0.001). In subgroup analysis, the duration 
of antibiotic use in the PCT-guided group was significantly 
shorter in patients with mild CAP, severe CAP, or nonbac-
terial CAP (all p < 0.001). The clinical success rates were 
similar between the PCT-guided and control groups (84% 
vs. 82%, p = 0.65). 

In the Chinese RCT discussed above, PCT-guided clinical 
decision-making regarding the discontinuation of antibiotics 
was evaluated in patients with CAP [21]. PCT was measured 
on days 3, 6, and 8, and antibiotics were discontinued in 
patients with PCT levels < 0.25µg/L. The total antibiotic ex-
posure risk was 1.8 times higher, and the median duration 
of antibiotic use was 2 days longer, in the control group 
than in the PCT-guided group. Four-week clinical outcomes 
were similar between the two groups. 

The ProVAP study evaluated the role of PCT in patients 

with ventilator-associated pneumonia (VAP) [66]. The rec-
ommendations called for a discontinuation of antibiotics in 
patients with PCT levels < 0.5 µg/L or a decrease from base-
line of > 80% at 72 hours after treatment initiation. PCT 
was measured daily for 10 days in VAP patients maintained 
on antibiotics. The PCT-guided group had significantly more 
antibiotic-free days (13 vs. 9.5 days, p = 0.049) and a 27% 
decrease in the overall duration of antibiotic treatment com-
pared to the control group (10 vs. 15 days, p = 0.038). Me-
chanical ventilation-free days, ICU-free days, length of hos-
pital stay, and 28-day mortality did not differ significantly 
between the two groups.

The effectiveness of PCT-guided treatment in terms of the 
discontinuation of antibiotics was evaluated in a Japanese 
RCT that included patients with aspiration pneumonia [67]. 
PCT was measured on days 3, 5, and 7 after antibiotics were 
started, with discontinuation of antibiotics in patients with 
PCT levels ≤ 0.5 ng/mL or a > 90% decrease from peak 
levels. The PCT-guided group had a median reduction of 
antibiotic duration of 3 days compared to the control group  
(5 vs. 8 days, p < 0.001). Clinical outcomes, including pneu-
monia relapse (21% vs. 23%, p = 0.80) and in-hospital 
death rates (10% vs. 21%, p = 0.26), were not significantly 
different between the two groups. 

The VAPrapid2 study evaluated the effectiveness of IL-1β/
IL-8-guided treatment in patients with VAP [68], following a 
study that identified IL-1β/IL-8 as a VAP marker [69]. Antibi-
otic discontinuation was recommended for patients whose 
IL-1β/IL-8 levels, measured in bronchiolar lavage fluid, were 
below the cutoff. There was no difference in antibiotic-free 
days or clinical outcomes, including SOFA score and mor-
tality, between the IL-1β/IL-8-guided group and the control 
group. However, the low compliance rate of the IL-1β/IL-8 
induction group may have been a limitation. Further studies 
are needed to explore this relationship.

Overall, PCT-guided antibiotic discontinuation reduc-
es overall antibiotic use in patients with CAP, exacerbated 
COPD, acute bronchitis, VAP, or aspiration pneumonia, 
without affecting clinical outcomes including mortality.

Febrile neutropenia: PCT
The ProfenC study evaluated the effect of PCT antimicro-
bial stewardship in children receiving cancer chemotherapy 
without bone marrow recovery and with a low-risk of febrile 
neutropenia [70]. Antibiotic cessation was recommended in 
those with PCT levels < 0.25 ng/mL, measured 48 hours af-
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ter antibiotic use. PCT-based clinical decision-making signifi-
cantly reduced antibiotic use (3 vs. 7 days, p < 0.001), with 
no differences in treatment failure compared to the control 
group.

REAL-WORLD DATA 

Different results may be obtained in real-world clinical prac-
tice than in clinical trials. A study in Switzerland thus ap-
plied the ProHOSP study algorithm to actual clinical prac-
tice [19,71], in which there were more patients with renal 
disease, cancer, or immunosuppression. Pneumonia severity 
and CAP rates were higher among real-world patients than 
in the ProHOSP cohort. The median duration of antibiotic 
use following the application of PCT-guided antimicrobi-
al stewardship in the real-world group was 6 days, which 
was 2 days longer than in the PCT group from the ProHOSP 
study (p = 0.08) and 1 day shorter than in the control group 
(p < 0.048). Adverse events, including mortality, ICU admis-
sion, recurrence, and disease-specific complications, were 
similar to those of the ProHOSP study (all p > 0.05).

According to a before-and-after analysis of PCT-guid-
ed antibacterial management conducted in Germany, 
PCT-guided ASP reduced antibiotic use density in the surgi-
cal ICU by 21.2% (1,005 in 2010 vs. 791.9 DDDs in 2012) 
[72]. However, while the use of aminoglycosides, cephalo-
sporins, and quinolones decreased, carbapenem use slightly 
increased, suggesting a limited impact of PCT-guided ASP 
on antibiotic selection.

A study conducted in the USA evaluated the cost-effec-
tiveness of applying the PRORATA study’s PCT-guided al-
gorithm to patients with suspected bacterial infection or 
sepsis who were hospitalized in the medical ICU [17,73]. 
PCT-guided antibiotic treatment significantly reduced anti-
biotic duration and hospital costs to $45 per patient and 
increased the quality-adjusted life-years by 0.0001. The eco-
nomic advantage of biomarkers was exemplified by a total 
annual hospital cost saving of $8,480.

In another study conducted in the USA, based on the 
Premier Healthcare Database, 78% of 933,591 adult pa-
tients with sepsis underwent biomarker testing [74]. The 
PCT group had more severe illness and more antibiotic ex-
posure than the other biomarker groups. Patients who had 
been PCT-tested twice or more had higher hospital costs 
than those not tested for biomarkers. However, the groups 

tested for PCT once (OR, 0.88; 95% CI 0.85–0.91) or at 
least twice (OR, 0.64; 95% CI 0.85–0.91) had a lower risk 
of death than the group not tested for biomarkers. CRP and 
lactate testing did not result in a difference in the OR. Con-
secutive PCT testing was associated with decreased mortali-
ty, but it did not reduce hospital costs.

Thus, the use of biomarkers for antimicrobial stewardship 
in real-world patients with sepsis and LRTI can reduce the 
duration of antibiotic use without worsening outcomes. 
However, issues related to antibiotic choice and medical 
costs remain controversial.

PHYSICIANS’ PERSPECTIVES

Currently, biomarkers are used in ASP to determine when 
to start antibiotics in patients with suspected bacterial in-
fections and when to stop antibiotics in treated patients. 
There is sufficient evidence from ASPs that PCT testing can 
be used alone. CRP testing has limitations with respect to 
informing the decision for antibiotic initiation or discontin-
uation when used alone, but it can be effective when com-
bined with PCT.

PCT testing cannot be applied in the management of all 
bacterial diseases, but it is relevant regarding the decision 
to initiate/discontinue antibiotics in sepsis and LRTI. When 

Figure 1. Clinical application of biomarkers for antibiotic use in 
patients with bacterial infections. PCT, procalcitonin; LRTI, lower 
respiratory tract infection.
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discriminating between non-infectious organ failure (for-
merly systemic inflammatory response system) and sepsis, 
patients who meet the diagnostic criteria for sepsis and 
have PCT levels ≥ 0.5 ng/mL can be started on antibiotics. If 
LRTI is suspected, the cut-off for initiating antibiotics is 0.25  
ng/mL. However, PCT-guided antibiotic initiation may lead 
to antibiotic misuse and misdiagnosis (Fig. 1). To reduce the 
likelihood of misdiagnosis, PCT levels should be measured 
again within 6–12 hours; to reduce the risk of antibiotic 
misuse, a clinician may decide to not administer antibiotics 
even if the PCT criteria are met. If antibiotics are maintained, 
short-term PCT measurements are needed before treatment 
discontinuation. 

PCT-guided antibiotic discontinuation is recommended 
in patients with PCT levels < 0.5 ng/mL (< 0.25 ng/mL in 
LRTI) or a decrease of ≥ 80% in their peak PCT level. PCT 
should be measured 5–7 days after antibiotic administration 
begins. If the levels do not meet the antibiotic discontinu-
ation criteria, they can be measured again after 2 days. In 
Korea, unjustified PCT measurements may not be covered 
by insurance, which can increase costs. Furthermore, while 
biomarkers can provide objective evidence in universal ASPs, 
their use should never take precedence over a clinician’s 
judgment.

GAPS AND FUTURE DIRECTIONS IN 
CLINICAL RESEARCH

Several research gaps regarding biomarkers and antimi-
crobial stewardship remain. Most studies have focused on 
reducing the total amount or duration of antibiotics. How-
ever, the purpose of antimicrobial stewardship is not only 
to reduce antibiotic use but also to identify patients who 
need antibiotics and administer the appropriate drug in a 
timely manner. Further studies on biomarkers are needed to 
support clinical decision-making as it pertains to empirical 
antibiotic selection and to shed light on the role of micro-
biological biomarkers. Microbiological biomarkers based on 
classical antibody measurements are of low sensitivity, and 
recent PCR techniques do not distinguish colonizers from 
pathogens. Further research on microbiological biomarkers 
should focus on the rapid discrimination of pathogens. The 
combination of novel microbiological biomarkers and exist-
ing host-response biomarkers will provide objective evidence 
for ASP and reduce the likelihood of clinical misjudgment.

CONCLUSIONS

Biomarkers are increasingly being applied in antimicrobial 
stewardship, especially to inform the decision of when to 
start or stop antibiotics for various infectious diseases. The 
most commonly used biomarker is PCT. The cut-off values 
of PCT for sepsis and pneumonia are 0.5 and 0.25 ng/mL, 
respectively. A clearly defined role for other host-response 
and pathogen-specific biomarkers in antimicrobial steward-
ship is still lacking. Future studies on these biomarkers are 
warranted to inform antimicrobial stewardship in a broader 
array of diseases.
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