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Pulmonary fibrosis is a fatal progressive disease with no effective therapy. Trans-
forming growth factor (TGF)-b1 has long been regarded as a central mediator of 
tissue fibrosis that involves multiple organs including skin, liver, kidney, and lung. 
Thus, TGF-b1 and its signaling pathways have been attractive therapeutic targets 
for the development of antifibrotic drugs. However, the essential biological func-
tions of TGF-b1 in maintaining normal immune and cellular homeostasis signifi-
cantly limit the effectiveness of TGF-b1-directed therapeutic approaches. Thus, 
targeting downstream mediators or signaling molecules of TGF-b1 could be an al-
ternative approach that selectively inhibits TGF-b1-stimulated fibrotic tissue re-
sponse while preserving major physiological function of TGF-b1. Recent studies 
from our laboratory revealed that TGF-b1 crosstalk with epidermal growth factor 
receptor (EGFR) signaling by induction of amphiregulin, a ligand of EGFR, plays a 
critical role in the development or progression of pulmonary fibrosis. In addition, 
chitotriosidase, a true chitinase in humans, has been identified to have modulating 
capacity of TGF-b1 signaling as a new biomarker and therapeutic target of sclero-
derma-associated pulmonary fibrosis. These newly identified modifiers of TGF-b1 
effector function significantly enhance the effectiveness and flexibility in targeting 
pulmonary fibrosis in which TGF-b1 plays a significant role. 

Keywords: Transforming growth factor beta1; Pulmonary f ibrosis; Response 
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INTRODUCTION

Fibrosis is a serious pathologic condition with excessive 
deposition of collagenous matrix that frequently re-
sults into a tissue stiffness and ultimately causes organ 
failure leading to death. As a result, it has been reported 
that about 45% of all deaths in developed countries are 
associated with some type of fibroproliferative diseases 
[1]. However, currently no effective therapies are avail-
able for the intervention of this devastating lung dis-
ease. In addition, the exact pathogenetic mechanism of 

tissue fibrosis is still largely elusive. 
Idiopathic pulmonary fibrosis (IPF), a prototypic fi-

brotic disorder in the lung, is a progressive lung disease 
characterized by epithelial damage, fibroproliferative 
matrix deposition and parenchymal remodeling [2-4]. 
During the last decades, significant efforts have been 
directed to identify cells, mediators, and pathways re-
sponsible for pulmonary fibrosis. The myofibroblasts 
are known as the majors cells for increased accumula-
tion of collagen and other extracelluar matrix in the 
lung, but the origin of these cells are not completely 
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understood [5-7]. The role of transforming growth fac-
tor (TGF)-b1 as a central mediator of tissue fibrosis was 
first recognized decades ago, numerous publications 
strongly still support its major role in a variety of fi-
brotic diseases [8-11]. Accordingly, TGF-b1 and its sig-
naling pathways have been regarded as attractive thera-
peutic targets to control f ibroproliferative diseases 
including pulmonary fibrosis [12,13]. 

Recently, transgenic (Tg) mice overexpressing TGF-b1 
in the lung using lung-specific Clara cell 10 kDa (CC10) 
or surfactant protein C (SP-C) promoters were generated 
to define the direct in vivo effector function of TGF-b1 
[14,15]. In earlier studies, fetal-lethality was a serious 
problem to get live transgene expressing animals be-
cause TGF-b1 plays a critical role in the development of 
airways [14]. Later, live lung-specific TGF-b1 Tg mice 
were successfully generated using a tight regulated in-
ducible system (CC10-tTS-rtTA-TGF-b1), and these 
mice provided an exciting opportunity to look into the 
effector function of TGF-b1 in the adult lung [15].

Intriguingly, the studies using CC10-tTS-rtTA-
TGF-b1 Tg mice first identified that TGF-b1 induced 
epithelial cell death or injury response in the lung, fol-
lowed by fibrotic tissue response [15]. These studies fur-
ther demonstrated that apoptotic cellular response is a 
critical event for subsequent TGF-b1-stimulated fibrop-
roliferative repair response, suggesting controlling cel-
lular apoptosis could be an effective therapeutic option 
for pulmonary fibrosis. The Tg approach was also suc-
cessfully employed to identify a number of downstream 
mediators of TGF-b1 in the lung, and some of these me-
diators, such as connective tissue growth factor and 
platelet-derived growth factor, were also shown to be ef-
fective therapeutic targets of pulmonary fibrosis [16]. 

Among downstream mediators of TGF-b1 in the 
lung, it is interesting to note that amphiregulin (AR), 
an epidermal growth factor receptor (EGFR) ligand 
prominently induced by TGF-b1, plays a critical role in 
pulmonary fibrosis [17]. Intervention of either AR ex-
pression or EGFR signaling significantly reduced TGF-
b1-induced pulmonary fibrosis, suggesting a critical 
role of EGFR signaling in this process [17]. The devel-
opment and progression of pulmonary fibrosis are also 
significantly affected by other factors modulating the 
expression or activation of TGF-b1 or its signaling 
pathways. Recent studies from our laboratory identified 

chitotriosidase (Chit1), a true chitinase (Cs) commonly 
detected in humans, was significantly associated with 
incidence of scleroderma-associated interstitial lung 
disease (SSc-ILD) and circulation levels of Chit1 were 
inversely correlated with lung function of SSc-ILD pa-
tients [18]. Interestingly, in vitro studies using a fibro-
blast cell line further identified that Chit1 sensitized 
TGF-b1 signaling by enhancing TGF-b1 receptor ex-
pression and activation of mitogen-activated protein 
kinase (MAPK)-Erk signaling. 

These studies suggest that there are multiple factors 
(collectively designated as “modifiers” in this review) 
that significantly modulate the final outcome of TGF-
b1-induced tissue responses. These modifiers would be 
more effective and tolerable targets for the intervention 
of pulmonary fibrosis than simple TGF-b1 blockers, 
because vital physiologic function of TGF-b1 can be 
substantially preserved in this way. In this review, these 
exciting new approaches targeted to “modifiers” of 
TGF-b1 for the intervention of pulmonary fibrosis are 
being highlighted with general introduction of the role 
and effector function of TGF-b1 in the pathogenesis of 
pulmonary fibrosis.

TGF-β1: CENTRAL MEDIATOR OF IPF

TGF-b1 is believed to play an important role in the 
pathogenesis of IPF because it is expressed in an exag-
gerated fashion in IPF where, in contrast to controls, a 
sizable percentage is biologically active [19-21]. The im-
portant role that TGF-b1 may play in this disorder can 
be seen in studies that demonstrate that TGF-b1 is a 
critical mediator of pulmonary fibrosis after bleomycin 
injury [22,23] and that high dose adenoviral TGF-b1 
transfer causes progressive pulmonary fibrosis in vivo 
[24,25] and IPF-like fibroblastic foci in in vitro explants 
[21]. Interestingly, the apposition of apoptosis, fibrosis 
and exaggerated TGF-b1 expression is well document-
ed in IPF [26-29], and recent studies with TGF-b1 Tg 
mice highlighted the importance of epithelial cell 
apoptosis in the pathogenesis of pulmonary fibrosis 
[15]. All these studies suggest that TGF-b1 plays a criti-
cal role in pulmonary fibrosis through regulation of 
injury and repair responses. However, the factors that 
control these TGF-b1 responses and the genetic and 
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other processes that allow TGF-b1 to contribute to the 
pathogenesis of f ibrosis are still largely elusive and 
need to be further defined in future studies.

TGF-β1 AND ITS EFFECTOR FUNCTION AND 
GENETIC MODIFIERS 

TGF-b1 family proteins are multifunctional cytokines 
that play pivotal roles in diverse biologic processes in-
cluding cell growth and survival, cell and tissue differ-
entiation, development, inflammation, immunity and 
tissue remodeling and repair. 

On superficial analysis, TGF-b1 can be accurately de-
scribed as a healing molecule that manifests anti-in-
flammatory and fibrotic effects while inducing wound 
healing. On closer analysis, it is clear that this is only 
partially correct and that the effector profile of TGF-b1 
can appear confusing and even contradictory [30-33]. 
This can be seen in inflammation where TGF-b1 has 
important anti-inflammatory effects in some settings 
[34,35] and proinf lammatory effects in others [35,36]. 
This is also seen in oncogenesis where TGF-b1 inhibits 
tumor cell growth while enhancing tumor migration 
and invasion [32]. TGF-b1 is essential for wound heal-
ing, stimulates matrix molecule deposition and angio-
genesis and is an essential mediator of the pathologic 
scaring in fibrotic disorders [22,23,30,37-39]. On the 
other hand, TGF-b1 can also induce tissue injury [40], 
induce cellular apoptosis, decrease epithelialization 
and inhibit wound healing [31,33,41-43]. The complexity 
of TGF-b1 effector functions can be attributed to a 
number of items. In particular, the effects of TGF-b1 
proteins vary with the state of activation and differenti-
ation of the target cells and the presence of other stim-
uli in the local microenvironment. The diversity in 
TGF-b1 receptor expression, depending on the type of 
cells, significantly impacts the cellular and tissue re-
sponses of TGF-b1. However, the mechanism causing 
the diversity in cellular and tissue effects of TGF-b1 is 
still largely elusive and needs to be addressed in future 
studies.

To define its effector functions in the lung, we devel-
oped Tg mice in which bioactive TGF-b1 was inducibly 
overexpressed in the lung [15]. Studies using these mice 
demonstrated that Tg TGF-b1 simultaneously induces 

tissue injury (apoptosis) and activates healing (fibrosis) 
and that the apoptosis is an obligatory prerequisite for 
fibrosis [15]. Recent studies demonstrate that the ulti-
mate TGF-b1-induced tissue response is dependent on 
murine genetic background and that these outcomes 
can be explained by the relative balance of injury, pro-
teolysis, and fibrogenesis [44,45]. The strain dependen-
cy of TGF-b1-stimulated pulmonary fibrosis strongly 
support the presence of genetically defined “modifiers” 
that significantly modulate the TGF-b1-stimulated tis-
sue response. In support of this observation, there is 
similar strain dependency in the radiation- or asbes-
tos-induced pulmonary fibrosis [46,47]. Identification 
of these genetic modifiers will provide an exciting op-
portunity to understand the mechanism of TGF-b-in-
duced fibrosis, that will lead to the discovery of novel 
and effective therapeutic targets with less undesirable 
effects for the treatment of pulmonary fibrosis. 

TGF-β1 SIGNALING AND CROSSTALK WITH 
EGFR SIGNALING

It has been well demonstrated that TGF-b1 binds and 
signals primarily through heterodimers of TGF-b1 re-
ceptor type I and type II complex that subsequently ac-
tivates the cascade of Smads (receptor-regulated Smads 
[R-Smads; Smads1, 2, 3, 5] and common mediator Smads 
[Co-Smads; Smad4]). The activated Smads complexes 
are transported to the nucleus and plays an essential 
role in the expression of TGF-b1 target genes together 
with other transcription factors such as CREB1-bind-
ing protein and p300. In addition, inhibitory Smads 
(such as inhibitory Smads6 and 7) and interacting mol-
ecules (such as SARA or Ski/SnoN) are associated with 
fine-tuning of this signaling pathway (Fig. 1) [48,49]. 
This is called canonical or Smad-dependent signaling 
pathways of TGF-b1 and regarded as a major pathway of 
TGF-b1 signaling [50]. However, a number of other sig-
naling pathways are also implicated in the tissue re-
sponses stimulated by TGF-b1. The MAPK/Erk, p38, 
c-Jun N-terminal kinase, nuclear factor-kb, and phos-
phatidylinositol 3-kinase signaling pathways are differ-
ently activated by TGF-b1 stimulation, depending on 
the type of cells and microenvironment. These nonca-
nonical (Smad-independent) pathways of TGF-b1 also 
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significantly contribute to the diverse biological func-
tion of TGF-b1 (Fig. 1) [50]. 

Interestingly, recent studies using TGF-b1 Tg mice 
demonstrated that TGF-b1 overexpression in the lung 
significantly induces AR, a EGFR ligand, and AR-stimu-
lated EGFR signaling is also crucial for both canonical 
and noncanonical TGF-b1 signaling (Fig. 2) [17]. In this 
study, siRNA silencing of AR or chemical ablation of 
EGFR signaling significantly decreased TGF-b1-stimu-

lated fibroblast proliferation and myofibroblast trans-
formation, suggesting a crucial roles of AR and EGFR 
signaling in TGF-b1-stimulated fibrotic tissue response 
in the lung. 

These studies suggested that multiple signaling 
pathways are meticulously connected to each other, 
presumably for the fine-tuning of cellular responses 
stimulated by TGF-b1. The profibrotic role of EGFR 
signaling was also elegantly demonstrated in a bleomy-

Figure 1. Transforming growth factor (TGF)-b1 activation and signaling pathways leading to tissue fibrosis. On the cell 
surface, integrins activate the latent form of TGF-b1 (A) then the bioactive TGF-b1 binds to the TGF-b1 receptor complex (B). 
The Smads proteins are the major signaling molecules mediating canonical TGF-b1 signaling (C). Receptor activated receptor-
regulated Smads (R-Smads; Smad2 and 3) binds to common mediator Smad (Co-Smad; Smad4), the complexes are transmitted 
into nucleus and regulate the expression of target genes together with other transcription factors (TFs) and coactivators. 
Inhibitory Smads (I-Smads; Smad6 and 7) are known to block Smad signaling by binding and directing TGF-b1 receptors 
to degradation. There are also Smad-independent pathways that include mitogen-activated protein kinase/Erk, TAK1/c-Jun 
N-terminal kinase (JNK), or phosphatidylinositol 3-kinase (PI3K)/Akt activation by TGF-b1 and other receptors. Finally, these 
TGF-b1 signaling pathways ultimately lead to the increases in the synthesis of profibrotic mediators and extracellular matrix 
(ECM) protein including collagens (E). A variety of “modifiers of TGF-b” can be targeted to modulate the final outcome of 
TGF-b1-stimulated fibrotic tissue responses at different levels of TGF-b activation and signaling as indicated (A-E). 
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cin-stimulated model of pulmonary fibrosis using ge-
fitinib, a specific kinase inhibitor of EGFR signaling 
[51]. Since EGF is known to stimulate fibroblast prolif-
eration [52], it is interesting to speculate a potential 
synergistic interaction between TGF-b1 and EGFR sig-
naling in fibroblast proliferation and myofibroblast 
transformation. Similar crosstalk among Smads2/3, 
EGFR and p53 pathways was reported in the expression 
of TGF-b1-induced fibrotic target genes [53]. However, 
whether and how these two major cellular signaling 
pathways are being coordinated in the development 
and progression of pulmonary fibrosis remains to be 
determined in future studies. It will be an exciting field 
of future investigation to identify molecules linking 
different signaling pathways, such as AR, since these 
molecules could be effective and novel alternative ther-
apeutic targets that regulate complex tissue phenotypes 
in which multiple signaling pathways are implicated.

CHITOTRIOSIDASE IN SCLERODERMA: 		
A MODIFIER OF TGF-β1 SIGNALING

The GH18 gene family contains Cs that bind and cleave 
chitin and chitinase-like proteins (CLP) that bind but 
do not cleave the chitin polysaccharide. These C/CLP 
are found across species from lower life forms (archea, 
prokaryotes, eukaryotes) to man. The nature of their 
contributions has been enigmatic because chitin is the 
only documented substrate of Cs, chitin and chitin 
synthase do not exist in mammals, and higher life 
forms do not use chitin as a nutrient [54,55]. Only acidic 
mammalian chitinase and chitotriosidase (chitinase 1; 
Chit1) are Cs. All of the rest are CLP (also called chi-
tolectins) which lack chitinase activity as a result of mu-
tations in their highly conserved putative enzyme sites 
[56,57]. Among these C/CLPs, Chit1 is the major Cs in 
humans and the best characterized Cs from a biologic 

Figure 2. Synergistic crosstalk and interaction between transforming growth factor (TGF)-b1 and epidermal growth factor 
receptor (EGFR) signaling mediated by amphiregulin (AR). TGF-b1 induces the expression of AR, and AR in turn stimulates 
fibroblasts proliferation through EGFR activation of phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein 
kinase (MAPK)/Erk. The EGFR activation also regulates TGF-b1-stimulated Smad activation, suggesting an intimate crosstalk 
and synergistic interaction between these two signaling pathways that ultimately lead to enhanced fibrotic tissue responses.
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and clinical perspective. In humans, mature mono-
cyte-derived macrophages, Gaucher’s cells and lung 
macrophages express this chitinase. Proinflammatory 
cytokines such as granulocyte-macrophage colo-
ny-stimulating factor, tumor necrosis factor-a, and li-
popolysaccharide stimulate the expression of Chit1 in 
monocyte-derived macrophages, whereas interferon-g 
and interleukin-4 inhibit Chit1 expression [58-60]. In-
terestingly, Chit1 can be found in detectable quantities 
in the circulation of normal individuals and is further 
increased in a variety of diseases characterized by in-
flammation, tissue remodeling and/or fibrosis includ-
ing bacterial or fungal infections, lysosomal storage 
diseases (Gaucher’s), sarcoidosis, and interstitial lung 
diseases [61-66]. However, the effector functions of 
Chit1 have not been clearly defined and its roles in the 
pathogenesis of specific diseases have not been eluci-
dated. To begin to define the in vivo roles of Chit1 in 
pulmonary injury and repair, we characterized the lev-
els of circulating Chit1 activity in patients with sclero-
derma (SSc) and investigated the bleomycin-induced 
pulmonary responses in newly generated Chit1 null 
mutant mice (Chit1-/-) and lung-targeted Chit1 overex-
pressing transgenic mice (Chit1 Tg) [18]. These studies 
demonstrate that the levels of circulating Chit1 activity 
are increased in patients with SSc where they correlate 
with the presence and severity of interstitial lung dis-
ease (SSc-ILD). In these studies, the significant role and 
effect of Chit1 in the pathogenesis of pulmonary fibro-
sis have been further demonstrated in an animal model 
of pulmonary fibrosis. The bleomycin-induced pulmo-
nary f ibrosis is significantly ameliorated in Chit1-/- 
mice, but enhanced in Chit1 Tg mice compared to wild 
type (WT) controls, suggesting that Chit1 plays a criti-
cal role in the pathogenesis of pulmonary fibrosis [18]. 

In earlier studies on SSc-ILD patients, the fibrotic 
lungs from scleroderma patients showed significant ac-
tivation (expression) of signature genes associated with 
TGF-b1 signaling without notable expression of TGF-b1 
[67,68]. Interestingly, Tg expression of Chit1 did not in-
crease the expression of TGF-b1 in the lung, however, in 
a separate in vitro experiment using fibroblast cell line, 
Chit1 significantly enhanced the TGF-b1-stimulated 
cellular responses by enhancing TGF-b1 receptor ex-
pression as well as canonical and noncanonical signal-
ing pathways of TGF-b1 [18]. These findings led us to 

speculate that Chit1 contributes to the development of 
TGF-b1-stimulated pulmonary fibrosis by sensitizing 
TGF-b1 signaling pathways. If this is the case, Chit1 
could be also an effective therapeutic target to block or 
delay the development or the progression of pulmonary 
fibrosis in which TGF-b1 plays a significant role.

CONCLUSIVE REMARKS AND FUTURE PROS-
PECTS

Pulmonary fibrosis is a complex disease with multiple 
factors are implicated in the development and progres-
sion of pathologic tissue responses. As demonstrated in 
a number of studies, TGF-b1 plays a central role in fi-
brotic tissue responses including pulmonary fibrosis, 
and the intervention of TGF-b1 expression or its sig-
naling would be the most promising therapeutic tar-
gets for the intervention of fibroproliferative diseases. 
Accordingly, a number of antibodies, siRNAs and small 
molecules have been developed to block the expression 
of TGF-b1 or its receptor or signaling molecules, and 
some of them are currently under extensive clinical tri-
als [13]. However, because of the vital physiologic func-
tion of TGF-b1 in normal immune and cellular ho-
meostasis, direct or complete blocking of TGF-b1 or its 
signaling would not be tolerable especially in long term 
therapeutic use. Thus, alternative ways to selectively 
inhibit the pathologic effect of TGF-b1 while preserv-
ing other essential biological function of TGF-b1 
would be the best strategy for the treatment of pulmo-
nary fibrosis in which TGF-b1 plays a significant role. 

In this regard, recent studies from our laboratory and 
others identif ied a number of promising candidate 
molecules that effectively regulate TGF-b1-stimulated 
f ibrotic tissue responses at different levels, from 
TGF-b1 activation to extracellular matrix (indicated as 
A to E in Fig. 1). As discussed above, they are genetically 
determined modif iers, downstream mediators of 
TGF-b1, and signaling modifiers. They include integ-
rins (such as integrins av), matrix metalloproteases, 
semaphorin 7a, phosphatase and tensin homolog ago-
nist, and prostaglandin E2 [69-73]. A number of non-
coding microRNAs have been identified to directly or 
indirectly regulate the expression and signaling of 
TGF-b1 [11]. The molecules directly associated with col-
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lagen processing, such as lysyl oxidase-like 2 [74], could 
be an effective therapeutic target to reduce the patho-
logic tissue accumulation of collagen by TGF-b1 stimu-
lation. Since TGF-b1-induced injury responses are cru-
cial for subsequent pulmonary fibrosis, pan-apoptosis 
inhibitors (such as pan-caspase inhibitors) or mesen-
chymal stem cells that replace the injured cells could 
be also therapeutic modifiers of TGF-b1-induced fi-
brotic tissue responses [75,76]. Although each of these 
modifiers alone has specific regulatory function on 
TGF-b1-induced tissue response, targeting multiple 
modifiers in a patient could provide better therapeutic 
effect than targeting a single modifier. This needs to be 
further validated in future studies. 

When viewed in combination, a number of “modifi-
ers” of TGF-b1 effector function including AR and 
Chit1 are already identified, and they are in the main 
road to be developed as effective and tolerable antifi-
brotic drugs. Continuous identification and targeting 
of different types of modifiers of TGF-b1 effector func-
tion through systematic and combinatorial approaches 
will lead us to a better position to control pulmonary fi-
brosis and other devastating fibrotic diseases in the 
near future. 
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