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The complex interaction of molecules within a biological system constitutes a 
functional module. These modules are then acted upon by both internal and 
external factors, such as genetic and environmental stresses, which under cer-
tain conditions can manifest as complex disease phenotypes. Recent advances 
in high-throughput biological analyses, in combination with improved com-
putational methods for data enrichment, functional annotation, and network 
visualization, have enabled a much deeper understanding of the mechanisms un-
derlying important biological processes by identifying functional modules that 
are temporally and spatially perturbed in the context of disease development. 
Systems biology approaches such as these have produced compelling observations 
that would be impossible to replicate using classical methodologies, with greater 
insights expected as both the technology and methods improve in the coming 
years. Here, we examine the use of systems biology and network analysis in the 
study of a wide range of rheumatic diseases to better understand the underlying 
molecular and clinical features.
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INTRODUCTION

The past few decades have produced substantial in-
sights into the understanding of complex human dis-
eases, due in part to advances in biological techniques. 
Each new advance provides a different prospective from 
which to interpret the mechanisms underlying disease 
phenotypes, leading to the establishment of new crite-
ria for the diagnosis and treatment of specific diseas-
es. On the basis of these scientific achievements, new 
drugs have been developed and considerable progress 

in patient care has been made; however, substantial 
unmet clinical needs remain. As more and more data 
continue to be produced, this robust accumulation of 
knowledge often makes it more difficult to prioritize 
information based upon the importance of that infor-
mation for laboratory and clinical practices. As new 
data often show that a disease is more complicated than 
originally anticipated, a systematic distillation and 
organization of these data beyond a simple piecing to-
gether of a puzzle are required.

Indeed, a prevailing concept in many complex dis-
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eases such as diabetes, cancers, autism, and rheumatoid 
arthritis (RA), is that disease phenotypes arise as a con-
sequence of interactions between genetic, environmen-
tal, and lifestyle factors, most of which have not been 
fully identified [1]. Many complex diseases are classified 
according to broad, well-established criteria, which are 
then used to guide treatment. However, this approach 
often encompasses a heterogeneous disease population 
exhibiting similar phenotypic traits, regardless of the 
underlying causes. Two of the best examples of this 
underlying heterogeneity include cellular heteroge-
neity within tissues, and genetic heterogeneity across 
patients [2]. Cellular heterogeneity refers to the dif-
ferences of aberrant cells and their distinct molecular 
signature according to the nature of disease, whereas 
genetic heterogeneity refers to the discordance of dys-
functional genes across patients. Differences such as 
these are often overlooked using classical reductive ap-
proaches which focus on a specific aspect, subsystem, 
or narrowly defined question, and are therefore ill suit-
ed for addressing complex diseases involving nonlinear 
dynamical interactions among genetic, cellular, and 
environmental factors.

SYSTEMS-BASED APPROACH TO COMPLEX 
DISEASES

The rise of the systems approach to human diseases
Classical biology is often defined by its reductionist 
approach in which a molecule of interest (gene, protein, 
etc.) is isolated and characterized as a means of deter-
mining its role in a particular disease. However, within 
a living organism these molecules rarely act in isola-
tion, working both cooperatively and antagonistically 
with other molecules. Furthermore, these interactions 
can be far reaching, affecting processes not only within 
the cell, but also in other cells, and even across organs 
[3]. The degree and range of cellular and molecular 
disturbances in complex diseases evolves dynamical-
ly alongside pathologic changes in related tissues or 
organs over time. This combination of both clinical 
factors and biological changes further adds to the com-
plexity and diversity of the disease. However, classical 
mathematical biology, which focuses on the study of 
particular functions (e.g., cell growth, differentiation, 

and proinflammatory activity) of molecular pathways 
through small-scale modeling and prediction, inher-
ently lacks the analytical power necessary to address 
such problems.

In recent years, unprecedented advances have been 
achieved by applying high-throughput technologies 
and computational approaches to the study of biologi-
cal systems. Methods such as genome-wide association 
studies (GWAS), next-generation sequencing, mass 
spectrometry, and nuclear magnetic resonance have 
enabled the acquisition of a massive amount of genom-
ic, transcriptomic, proteomic, and metabolomics data, 
which have been used to identify key determinants 
of complex diseases [4,5]. As a result, large amounts of 
data, including sequence alterations and multilevel 
biomolecular profiles, are available for many human 
diseases, most of which are accessible from specialized 
databases and public repositories [6]. The increasing 
accuracy of these data, along with falling costs, and a 
reduction in processing time necessary for the acqui-
sition of large-scale omics data have dramatically in-
creased the availability of data for both diseased tissues 
and specific perturbations [7]. Among the key challeng-
es presented by this newfound wealth of information is 
the integration of these multiple dimensions to identi-
fy associations with distinct clinical phenotypes, and 
biomarker panels for use in clinical practice.

To handle these large data sets, a systems-level ap-
proach is necessary. Systems biology aims to organize 
and interpret large volumes of highly complex and het-
erogeneous information generated by high-through-
put technologies into a manageable format, to under-
stand how biological systems function [8]. Systems 
biology first approaches large-scale data through the 
use of unbiased systematic measurements without a 
prior hypothesis, and then provides a framework for 
assembling models of biological systems [2]. Integrated 
systems analysis networks illustrate the modularity of 
biological interactions. In this instance, “modules” are 
defined as collections of genes/proteins or interacting 
complexes that are involved in the determination of 
specific cellular functions through network formation 
[9,10]. They may differ depending on the networks or 
nodal proteins involved in functional interactions, and 
transform into a different type through a change in 
composition, signal integration, and over time. A dis-
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ease module is based on the “local hypothesis,” which 
states that proteins involved in the same disease have 
an increased tendency to interact with each other [3]. 
Disease phenotype can be determined when the critical 
module is disrupted as a result of any combination of 
perturbed molecular components.

Systems biology of human disease, also called net-
work medicine, is an emerging tool using both integra-
tive and systems-level approaches for the interpretation 
of genome-scale data in the context of health and dis-
eases [3,11]. Network medicine can be used to elucidate 
the molecular complexity of human diseases while 
offering computational methods to discern how such 
complexity controls disease manifestations, progno-
sis, and therapy [3]. Recent advances in systems biology 
have greatly expanded both its breadth and depth, with 
a host of new technologies and methods, both experi-
mental and computational, for use with high-through-
put data [2,8]. Furthermore, these approaches can be 
used to analyze the massive amounts of clinical data 
readily accessible through electronic medical records, 
with translational bioinformatics capable of integrat-
ing this biological and clinical information into a com-
prehensive picture of disease pathogenesis (Fig. 1) [7,12].

How to reconstruct a disease network and select 
key regulators
Complex diseases such as RA are the result of a com-
bination of genetic and environmental perturbations 
rather than a single, easily identified cause. Systems 
biology approaches diseases such as this by recon-
structing perturbed gene networks to identify key me-
diators of pathology. These types of investigation are 
usually conducted in a similar manner, with a typical 
systems-based study employing many of the same basic 
approaches [13]. First, investigators should define the 
“system,” which can range in size from a single organ-
elle to the entire organism, depending on the disease. 
The second step is to select the components involved 
in the system. Typical components include mRNA 
transcripts, noncoding RNAs, proteins, metabolites, or 
physiological or pathological parameters. Third, the 
investigators need to determine the degree of inter-
action between these components, often using in vitro 
experiments such as co-immunoprecipitation to de-
fine protein-protein interactions (PPIs). Alternatively, 
investigators can apply biological network maps using 
existing information related to these interactions, in-
cluding PPI networks (Search Tool for the Retrieval of 
Interacting Genes/Proteins [STRING], Human Protein 
Reference Database [HPRD]), metabolic networks (Kyo-
to Encyclopedia of Genes and Genomes [KEGG], Bio-
chemical Genetic and Genomic [BiGG]), RNA networks 
(TargetScan), and regulatory networks [3]. While public 
interaction databases cover a wide range of potential in-
teractions, no list is exhaustive, with many interactions 
either too newly discovered or not yet established to 
be included in the database. In this case, investigators 
must either search published articles to find reported 
interactions, or use literature-mining tools such as In-
formation Hyperlinked over Proteins [14]. The fourth 
step is to model the network mathematically to identify 
changes in interactions between network components 
in response to disease-related perturbations. Finally, 
investigators should validate the models experimentally.

Our recent study shows how the systems approach 
functions for investigation of a reconstructed RA-per-
turbed network [14]. First, RA-associated genes (RAGs) 
were selected by analyzing gene expression data sets 
generated from RA, osteoarthritis, and normal sy-
novial tissues. These RAGs were reconstructed as an 

 

Translational bioinformatics  

The ultimate modeling of 
these data to describe 

the system and its response 
to perturbation
 

Network 
visualization  

Functional 
annotation

Data 
enrichment

Cl
in

ica
l r

es
ou

rc
ee

 e
lec

tro
ni

c m
ed

ica
l r

ec
or

ds
 (E

M
R)Systems biology

The measurement of 
resulting gene, protein, 
and pathway responses

The integration of 
these data

The perturbation of 
a property of the system

Disease biomarkers

Disease mechanism

Therapeutic mechanism

Drug response

Drug treatment

Drug repositionig

Personalized signature
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sis, and their application to clinical practice.
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RA-perturbed network showing RA-associated cellular 
processes and the interactions between RAGs, using 
public protein interaction databases such as STRING 
and KEGG (Fig. 2A). This reconstructed network was 
used to identify the key cellular player in RA synovium, 
and demonstrated the effects of tumor necrosis factor 
α (TNF-α), interleukin 1β (IL-1β), and anti-TNF therapy 
on the genes and modules included in the networks. 
These target molecules, which can potentially modu-

late RA-perturbed networks, were selected based upon 
the number of interactions among the RAGs.

Systems approaches to diseases can also be used to 
identify functional characteristics of disease-associ-
ated cells and potential target molecules. In our recent 
study [15], a global transcriptome profiling of RA fibro-
blast-like synoviocytes (FLS) showed that differentially 
expressed genes (DEGs) in RA-FLS are enriched in key 
cellular processes related to cell invasion (Fig. 2B). A 
small group of genes was selected in modules related 
to the invasive potential of RA-FLS, among which we 
identifies a number of regulatory genes previously as-
sociated with RA pathogenesis, such as transcriptional 
regulators or signaling molecules.

Compelling results generated using the systems 
approach
Network analysis has to date presented compelling 
results which would not have been possible using tra-
ditional methods. The majority of disease-associated 
genes long considered central to disease pathology are, 
in fact, nonessential, and showed no tendency to en-
code hub proteins; moreover, their expression pattern 
indicated that they are localized on the periphery of the 
functional network [16]. This finding is significant, as it 
shows that many current drugs do not target the essen-
tial disease-associated proteins [17]; that is, most drugs 
are palliative and do not directly perturb the proteins 
corresponding to the underlying cause of disease. This 
observation may explain much of the unsatisfactory 
therapeutic efficacy in RA and other drugs, along with 
the variety of adverse effects associated with these treat-
ments.

Disease modules from different disorders can over-
lap, with perturbations caused by one disease module 
directly affecting other disease modules. As a result, 
complex diseases often share similar phenotypic traits 
and comorbidities [18]. For example, RA, systemic lupus 
erythematosus (SLE), and diabetes are completely dif-
ferent diseases, but have an equally increased risk for 
accelerated vascular atherosclerosis. A more compre-
hensive study which modeled a network of disorders 
and disease-associated genes revealed significant clus-
tering of many human diseases within the disease net-
work, highlighting the common mechanisms underly-
ing a collection of various human diseases that involve 

Figure 2. A rheumatoid arthritis (RA)-perturbed network 
in the RA synovium and enriched modules in the RA-fibro-
blast-like synoviocytes (FLS) and synovial macrophages (SM). 
(A) An RA-perturbed network describing RA-associated 
cellular processes, involving 242 upregulated RA-associated 
genes (RAGs), and their interactions. The network nodes are 
arranged into 16 modules based on their associated GOBP 
(Gene Ontology Biological Processes) and KEGG (Kyoto En-
cyclopedia of Genes and Genomes) pathways. The nodes with 
the red boundary represent differentially expressed genes 
(DEGs) in RA-FLS. (B) Three-dimensional conic graphs 
showing module enrichment scores (MES) representing the 
contribution of RA-FLS and SM to the individual modules. 
The three sets of MES were computed from the compari-
sons of RA-FLS and osteoarthritis (OA)-FLS (left), RA-FLS 
+ interleukin 1β (IL1β) and unstimulated OA-FLS (middle), 
and RA-SM and control macrophages (right). The height of 
the circular cones indicates the magnitude of the MES in 
the corresponding module. Purple cones indicate MES p val-
ues < 0.01, whereas gray cones indicate MES p values > 0.01. 
Adapted from You et al. [14] and You et al. [15]. 
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abnormalities in a specific, critical subset of genes [16]. 
The shared characteristics and interconnectedness of 
disease modules may explain why some drugs can treat 
many different diseases [19]. Furthermore, drug reposi-
tioning, the application of existing drugs for new indi-
cations, can be achieved on the basis common network 
targets [20,21], with a successful repositioning able to 
avoid the common pitfalls of drug discovery, including 
cost, high failure rates, the time necessary to bring a 
drug to market.

Points to be considered in systems analysis
Clearly, systems biology is an excellent tool for decod-
ing large-scale multilevel data, and for understanding 
the relationship between genotypes and phenotypes 
in the context of health and diseases. However, this 
approach has several critical limitations. First, consid-
erable progress has been made in technologies related 
to global cell measurements and the computational 
analyses associated with these investigations; however, 
these efforts remain costly and time consuming. Sec-
ond, human interactome maps based on the published 
biological literature remain incomplete, with modules 
identified by analysis of high-throughput data less reli-
able than those derived from small-scale experimenta-
tion. Known disease genes tend to be investigated more 
extensively, which might introduce a bias toward high-
er connectivity. Moreover, many real and functionally 
relevant interactions are missing in the current PPI 
data sets. Third, network modeling does not replace 
any of the classical techniques of biochemistry or ge-
netics; instead, it provides a set of organizing principles 
that integrate these data. In addition, interactions are 
often measured in a binary manner, with no informa-
tion regarding the nature of an interaction. Compu-
tationally identified network modules typically lack a 
mechanistic explanation of pathway activities but rath-
er serve as groups of genes that work together to achieve 
a particular function. The current estimates suggest 
that the human interactome comprises ~130,000 to 
650,000 protein interactions [22,23]; however, only a 
subset of these has been determined experimentally. 
Therefore, the simulated physical and functional inter-
actions should undergo a rigorous experimental vali-
dation process to elucidate their biological relevance. 
Fourth, both the nodes and the interactions discussed 

above must be evaluated in the context of tissue spec-
ificity. Fifth, a considerable portion of the reported 
results is interpretations of transcriptomic data from 
PPI analysis. However, mRNA expression accounts for 
only 40% of the variability in protein levels [24]. While 
the genome comprises 20,000 to 25,000 genes [25], the 
proteome is estimated to comprise > 1 million proteins 
[26]. Changes at the transcriptional and mRNA levels 
increase the size of the transcriptome relative to the 
genome, and the myriad of different posttranslational 
modifications exponentially increases the complexi-
ty of the proteome relative to both the transcriptome 
and the genome [27]. Finally, transcripts or proteins in 
the clinical samples can be affected by diverse clinical 
variables other than the disease itself. Attention must 
be given to the study design and patient selection to 
minimize the confounding effect of clinical factors, 
though biological variables are more difficult to control 
for than technical variables.

Systems approach and network analysis in rheumat-
ic diseases
Systems biology approaches have only recently been 
employed in the study of rheumatologic diseases, with 
initial efforts focused on refining the existing knowl-
edge, discovering novel biomarkers, and identifying 
new therapeutic targets for RA and SLE [28,29]. How-
ever, the majority of available data exist at the gene 
expression profiling and comparative analysis stages, 
with true data integration limited to a handful of ma-
jor diseases. The detailed organizing principles, tools, 
and methods for understanding systems biology or 
network medicine are beyond the scope of this review; 
a series of recent reviews cover all of the relevant issues 
and methodologies in great detail [2,3,8,11,30]. Here, we 
will review recent efforts to use systems approaches for 
characterizing rheumatic diseases, and highlight key 
studies that have successfully integrated network theo-
ry, to afford new insight into the molecular and cellular 
interconnectedness underlying disease phenotypes.

Rheumatoid arthritis
RA is a good model for understanding the typical char-
acteristics of complex diseases. RA is a chronic, pro-
gressive, debilitating autoimmune disease involving 
a multitude of environmental and genetic factors that 
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show nonlinear dynamic interactions; moreover, it is 
highly dependent on sex and age [31]. The disease is 
characterized by chronic inflammation of the synovi-
um, which over time results in irreversible damage to 
the joints, leading to pain and functional impairment. 
The proinflammatory cytokine TNF-α is a critical me-
diator of inflammation in RA [32]; the use of biological 
agents neutralizing TNF-α activity in combination 
with methotrexate has revolutionized the treatment of 
RA, producing significant improvements in clinical, 
structural, and functional outcomes [33,34]. However, 
TNF inhibitors are not effective in all patients; ~30% 
of patients treated with a TNF inhibitor failed to at-
tain the treatment goal [35-37], while many more have 
discontinued treatment due to adverse effects or loss 
of efficacy due to secondary failure or acquired thera-
peutic resistance [38]. Moreover, in clinical practice, < 
50% of patients were able to sustain remission for > 1 
year [39], while ~50% of patients who reached drug-free 
remission restarted disease-modifying antirheumatic 
drugs because of relapse [40], a disappointing reality 
also seen with other biologics [41]. These results suggest 
that while TNF-α and IL-6 are key players mediating 
rheumatoid inf lammation, they function primarily 
as intermediaries, with the control of one or two such 
cytokines insufficient to manage the disease. Given the 
heterogeneity among RA patients in terms of clinical 
outcomes despite otherwise similar phenotypes, fur-
ther efforts are needed to discover more fundamental 
regulatory pathways and/or molecules governing the 
common pathologic traits, and to distinguish the role 
of individual genetic variation to guide personalized 
therapeutic intervention.

The most promising candidate genes associated 
with RA susceptibility were identified from large-scale 
GWAS and transcriptomic analysis [42]. An analysis of 
RA susceptibility genes using PPI databases showed 
the extent of potential physical interaction between the 
identified protein products. This network was built 
using RA candidate genes, and comprises major and 
minor network nodes. Several confirmed RA suscep-
tibility loci such as TRAF6, STAT1, and IL2RB can be 
recognized among the major nodes [43]. Interestingly, 
CTLA4, currently an effective therapeutic target, and 
PTPN22, confirmed as a strong susceptibility gene, 
have fewer interactions than expected, and were posi-

tioned at the periphery of the network, inferring func-
tional characteristics of genetic variants implicated in 
RA susceptibility. This hypothetical network was con-
structed using cumulated high-throughput data and 
PPI databases such as HPRD; however, the physical and 
functional interactions between proteins and their reg-
ulatory role in the modular processes of disease tissues 
and organs were not validated experimentally.

Another research group acquired extensive GWAS 
data by searching the electronic databases, and rean-
alyzing the data [44]. The risk and predictive value of 
each genetic variant for RA was assessed, and a PPI 
network was constructed using the HPRD database. 
Next, a random walk with restart algorithm was used to 
prioritize genes in terms of their proximity to validated 
RA susceptibility genes within the PPI network; ZAP70 
was the top-ranked gene in this algorithm. Notably, a 
mutation in ZAP70 was shown to cause aberrant thymic 
T-cell selection in mice, leading to the development 
of RA-like symptoms [45]. ZAP70 has also been shown 
to directly interact with protein tyrosine phosphatase, 
non-receptor type 22 (PTPN22) and Fc receptor-like 
protein 3 (FCRL3) among the proteins encoded by RAGs 
in the HPRD database. Subsequent analyses revealed 
three functional modules in the RA-associated net-
work, as determined using the agglomerativE hierar-
chicAl clusterinG based on maximaL cliquE (EAGLE) 
algorithm and Database for Annotation, Visualization, 
and Integrated Discovery (DAVID): leukocyte activa-
tion and differentiation, pattern-recognition receptor 
signaling pathway, and chemokines and their recep-
tors. Taken together, these results demonstrated the 
utility of a systems genetics approach in shaping the 
understanding of biological pathways highlighted by 
the various common genetic variants associated with 
the disease. While the overarching results were largely 
simply a corroboration of existing knowledge regard-
ing the molecular pathogenesis of RA, these findings 
lay the foundation for the mapping strategies necessary 
to elucidate biological pathways.

Recently, a study of RA patients was conducted exam-
ining gene expression profiles of whole blood collected 
before and during treatment with a TNF-α inhibitor. 
From these data, researchers were able to build a mo-
lecular network regulated by TNF-α, and identify the 
molecular signatures determining the heterogeneity 
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of treatment response relevant to clinical index [46]. 
Twenty-two transcripts were identif ied to have new 
roles in modulating DAS28 scores, of which six repre-
sented potential targets of anti-TNF therapy. In par-
ticular, CD86 was identified as a strong modulator of 
DAS28, tender joints, or swollen joints, and represents 
an important TNF-α-independent mechanism active 
in RA patients. This f inding is consistent with the 
therapeutic impact of modulating CD86 with abatacept 
(CTLA4-Ig) as an alternative to TNF-α inhibitors [47].

Disease modules are groups of nodes whose pertur-
bations (mutations, deletions, copy number variations, 
or expression changes) can be linked to a particular 
disease phenotype, and can be found across different 
functional molecules [3]. Together, these modules make 
up a larger disease network, which is transformed by 
perturbation in one or more proteins within a mod-
ule. Therefore, it is important to consider not only the 
effects on the individual module but also the larger 
disease network as a whole, depending on the disease 
status and treatment response. Our group developed 
a multifaceted systems approach for identifying core 
RAGs, reconstructing RA-perturbed networks, and 
selecting potential targets for the diagnosis and treat-
ment of RA using expression data from 14 distinct 
gene sets, obtained from the synovial tissues, periph-
eral blood cells, and FLS of RA patients [14]. First, the 
RA-perturbed networks revealed that RA-FLS acts as a 
major factor in a wide range of RA-perturbed process-
es. Second, anti-TNF-α therapy causes a wide spectrum 
of RA-perturbed processes to tend toward normality; 
however, B cell-related modules, such as the B cell ac-
tivation and the immunoglobulin modules, were only 
modestly affected by anti-TNF-α therapy, suggesting 
that B cell-targeted therapy may be effective for cases 
refractory to TNF-α inhibitors. Indeed, rituximab, an 
anti-CD20 monoclonal antibody, has been approved 
for the treatment of RA patients resistant to TNF-α 
inhibitors [48]. Finally, we identified a set of 19 key tran-
scription factors (TFs) that play crucial roles in the reg-
ulation of 55% of the genes governed by RA-perturbed 
networks. Of note, we identified a set of candidate genes 
that had not previously been reported as diagnostic 
markers or therapeutic targets of RA, despite their 
strong association with RA-associated cellular process-
es (Fig. 3A). Of these candidate genes, we selected nu-
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Figure 3. Network construction and identif ication of key 
regulators in rheumatoid arthritis (RA). (A) Gene regulatory 
networks activated in RA. Target enrichment scores repre-
senting the significance of overlaps between the targets of 
each transcription factor (TF) and the RA-associated genes 
belonging to the network modules. Gene regulatory net-
works describing the TF-target relationships for three pro-
cesses: T-cell activation including Runt-related transcrip-
tion factor 1 (RUNX1) and forkhead box P3 (FOXP3), matrix 
remodeling including activator protein 1 (AP-1) (JUN and 
FOS) and nuclear factor NF-kappa-B p105 subunit (NFKB1), 
and cell proliferation and survival including NFAT5, E2F3, 
and tumor protein p53 (TP53). (B) Selection of potential 
regulators for fibroblast-like synoviocytes (FLS) invasion. A 
network model describing the regulatory interrelationships 
of periostin (POSTN), twist family bHLH transcription fac-
tor 1 (TWIST1), mothers against decapentaplegic homolog 7 
(SMAD7), Transforming growth factor beta-1-induced tran-
script 1 protein (TGFB1I1) and their associated processes. 
The arrows denote regulator-target gene relationships. NF-
κB, nuclear factor-κB; IL-6, interleukin 6. Adapted from You 
et al. [14] and You et al. [15]. 
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clear factor of activated T-cells 5 (NFAT5), known as an 
osmoprotective TF activated by hypertonicity, for fur-
ther validation using human RA-FLS and heterozygous 
NFAT5-haplodeficient mice [49].

A previous analysis of process interactions gleaned 
from the publicly available microarray data identified 
NFAT5 as a major TF linking different modules in the 
center of a global interaction network [50]. In our analy-
sis, we reconstructed a molecular network that featured 
FLS dominant cellular functions by comparing the 
transcriptomes of FLS and synovial macrophages (SM) 
under unstimulated and IL-1β-stimulated conditions. 
RA-FLS acquired a proinflammatory signature domi-
nant in RA-SM without losing their inherent invasive 
properties [15]. From this network model, periostin 
(POSTN) and twist family bHLH transcription factor 1 
(TWIST1) were identified as key regulators responsible 
for FLS invasiveness, with their functional signif i-
cance was confirmed both in vitro and in vivo (Fig. 3B). 
Together, these efforts demonstrate the value of a sys-
tems-based approach for the study of complex diseases. 
This method provides a comprehensive and systematic 
basis for the mechanisms underlying RA pathogenesis, 
with the resulting RA-perturbed network models iden-
tifying a number of high-value targets for use as thera-
peutic targets and diagnostic markers.

Systemic lupus erythematosus
SLE is an autoimmune disease that affects predomi-
nantly females. In SLE, loss of tolerance to nucleic acids 
and their interacting proteins results in the production 
of pathogenic autoantibodies that cause inflammation 
and tissue damage [51]. Unlike RA, SLE has no specific 
target organ. The involvement of several organ systems 
during flare-up demonstrates the unusual heterogene-
ity of the disease, and presents a significant hurdle in 
terms of sample collection, deconvolution, and transla-
tion of high-dimensional data. Accordingly, most stud-
ies have focused on peripheral blood cells, investigat-
ing the association between the type I interferon (IFN) 
signature and disease activity indices.

The IFN signature has been associated with wide 
range of pathologies, including severe clinical man-
ifestations in lupus nephritis (LN), disease activity 
indices, including the SLE disease activity index (SLE-
DAI) score, hypocomplementemia, and anti-dsDNA 

titer [52-58]; however, no correlation was observed in 
relation to disease severity or disease flare risk [56,58]. 
This limitation may be attributable to several factors 
such as clinical variability, including age, sex, comor-
bidity, and medication, the high dimensionality of the 
data, and the masking of transcript changes due to the 
relative abundance of bystander cells or a depletion of 
key effector cells [28]. In this regard, deconvolution of 
the data, subset analysis, and a module-based approach 
using unbiased, data-driven processes represent via-
ble methods for addressing this problem [28,59,60]. In 
this regard, Chiche et al. [60] presented striking results 
based upon a modular transcriptional repertoire anal-
ysis. They examined microarray data obtained from 62 
patients with SLE, revealing three specific IFN-related 
modules. These signatures were dynamic in nature, 
exhibiting a gradient of activation across samples, with 
distinct activation thresholds and patterns of upreg-
ulation for each module. Importantly, upregulation 
of individual IFN modules correlated with different 
patterns of clinical symptoms and biological marker 
expression. These data suggest that a more granular 
and focused approach to the various IFN signatures 
may represent a superior method for evaluating disease 
activity and/or prognosis, and may be used to tailor 
therapies targeting IFNs and related pathways.

Recently, a series of network-based analyses have 
been performed with the goal of identifying novel bio-
markers or target molecules using data deposited in 
public repositories. Siddani et al. [61] studied immune 
networks in SLE, calculating centrality measurements 
based upon known protein interactions and signal-
ing networks, identifying important disease-related 
candidate genes such as SOCS3, PDGRFA, NFKBIA, 
and NCF2, consistent with previous reports [62-65]. 
However, much follow up is necessary to validate these 
findings. In another study using the atBioNet data-
base system, two major modules were generated from 
seed genes using a fast-network-clustering algorithm: 
inflammatory process and immune activity [66]. The 
major signaling pathway involved in the regulation of 
the genes in the inflammatory module was the mito-
gen-activated protein kinases pathway, whereas that 
involved in the immune activity module was the JAK-
STAT signaling pathway. A total of 14 genes, five in the 
inflammatory module and nine in the immune activity 
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module, have previously been identified as possible 
biomarkers for SLE. For instance, Gadd45a gene was 
reported to be associated with a lupus-like immune au-
toimmune response [67].

Murine models are a valuable tool for understanding 
human disease, as well as for identifying and testing 
drug candidates for subsequent human trials. Murine 
models mimic human inf lammatory diseases; how-
ever, many of the responses seen in these models are 
only weakly predictive of the human condition [68]. LN 
is one of the most frequent and severe manifestations 
seen in at least 50% of patients with SLE [69]. Recent 
attempts have sought to identify the shared pathogenic 
mechanisms in the development of LN between mice 
and humans, and to determine which mouse model 
most accurately reflects specific molecular pathways 
occurring in humans [70]. To address this issue, 
gene-expression profiles from microdissected human 
LN kidney biopsies and whole kidneys from three SLE-
prone murine models were compared. Both unique 
and common transcriptional networks were observed 
among the three murine models (NZB/W F1, NZW/
BXSB, and NZM2410 mice) and human LN. The most 
commonly shared network nodes reflect the key patho-
logic processes of immune cell infiltration/activation, 
endothelial cell activation/injury, and tissue remodel-
ing/fibrosis, with macrophage/dendritic cell activation 
as a dominant transcriptional pathway shared between 
the two species. These results highlight the pitfalls of 
extrapolating from a single mouse model to human 
disease, and vice versa; characteristics unique to each of 
the three murine models might be exploited to classify 
patients for further evaluations based on their renal 
molecular profiles [70].

Ankylosing spondylitis
Ankylosing spondylitis (AS) is a chronic, progressive 
disease characterized by inf lammation of entheses, 
leading to new bone formation, syndesmophytes, and 
ankylosis of joints, primarily in the axial skeleton [71]. 
Zhao et al. [72] integrated an array of genomic data re-
lated to AS available from public repositories (Online 
Mendelian Inheritance in Man [OMIM] database, 
microarray experiments from the GEO database, and 
proteomic experiment results from the literature) to 
prioritize candidate AS disease genes in the context 

of human protein interactomes. Immune-mediated 
inf lammation and imbalanced bone modeling were 
the two key pathologic processes in the network, with 
TNF-α and IL acting as the pivotal cytokines mediat-
ing this interaction. While this result corroborated the 
established hypothesis [73], it failed to produce novel 
insights.

Novel AS candidate genes were identified from whole 
blood transcriptional profiling using a whole-genome 
microarray approach. Pimentel-Santos et al. [74] vali-
dated 14 DEGs in AS patients, among which SPOCK2 
(osteonectin) and EP300 were identified as interesting 
candidate genes that might be able to provide insight 
into AS progression. SPOCK2 has been shown to play 
a role in the regulation of bone remodeling [75,76] and 
has previously been implicated in AS pathogenesis [77]. 
A simulated network performed using this same data 
was relatively scattered and connected only loosely. 
Statistical analyses identified 11 genes with high topo-
logical scores along with two modules with functional 
significance. These two modules were enriched with 
majority of DEGs involved in cell receptor signaling, 
natural killer cell-mediated cytotoxicity, and primary 
immunodeficiency. However, the proposed genes and 
modules diverged substantially from the original study 
result [74], suggesting missing pieces in the puzzle of 
AS. Although several candidate genes, including RGS1, 
TLR4, sLIGHT, and BIP have been implicated in the 
pathogenesis of AS through microarray-based studies 
of peripheral blood mononuclear cells [78-83], gut cells 
[84], and synovial fluid mononuclear cells [85], their po-
sitions and interactions with other molecules were not 
considered within the network model. Systems analysis 
after full integration of the available data and/or de-
convolution will be necessary to better elucidate these 
points.

CONCLUSIONS

Systems biology focuses on the coordinated, dynamic 
behavior of a group of molecules within entire bio-
logical systems, reinterpreting human diseases as the 
result of perturbations to the functional module or net-
work. Systems biology provides a new perspective from 
which to explore the underlying molecular systems, 
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which until now had been unattainable using existing 
methods. Furthermore, network-based approaches and 
modular modeling have the advantages of simulat-
ing the behavior of a biochemical molecule or system 
under different perturbations, or hypothetical condi-
tions that may be of interest but not readily feasible in 
experimental settings. Such an approach can be used 
to streamline the traditional hypothesis generation 
mechanisms common to biochemical research, and 
reduce experimental trial and error by narrowing the 
predictive range to within functional modules. This 
approach may be useful for predicting the adverse ef-
fects of drugs, repurposing old drugs, and designing 
new drugs with maximal efficacy and minimal adverse 
effects [19,20,86].

The application of systems biology in clinical medi-
cine is in its infancy. Systems approaches and network 
analysis are not scientific end points on their own, but 
instead valuable tools for the study of complex diseas-
es. However, it is important to recognize that while a 
large number of multilevel biomolecular profiles have 
been stored and are continuously being updated, most 
provide only a snapshot of the biological network in 
selected cells, tissues, and organs, produced under 
limited experimental conditions and for a group of pa-
tients with similarities at a certain stage. The best way 
to assemble and integrate high-dimensional multiplat-
form data with high-level heterogeneity and temporal 
and spatial dynamics remains an open question [87]. 
In the future, we hope to see systems-based approaches 
and network analysis utilized in the study of a broad 
range of rheumatic diseases, allowing for a better un-
derstanding of the molecular and clinical features un-
derlying the disease, and providing critical targets for 
screening and therapy.
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