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Human genetic variation is represented by the genetic differences both within 
and among populations, and most genetic variants do not cause overt diseases 
but contribute to disease susceptibility and influence drug response. During the 
last century, various genetic variants, such as copy number variations (CNVs), 
have been associated with diverse human disorders. Here, we review studies on 
the associations between CNVs and autoimmune diseases to gain some insight. 
First, some CNV loci are commonly implicated in various autoimmune diseases, 
such as Fcγ receptors in patients with systemic lupus erythemoatosus or idiopath-
ic thrombocytopenic purpura and β-defensin genes in patients with psoriasis 
or Crohn’s disease. This means that when a CNV locus is associated with a par-
ticular autoimmune disease, we should examine its potential associations with 
other diseases. Second, interpopulation or interethnic differences in the effects 
of CNVs on phenotypes exist, including disease susceptibility, and evidence sug-
gests that CNVs are important to understand susceptibility to and pathogenesis 
of autoimmune diseases. However, many findings need to be replicated in inde-
pendent populations and different ethnic groups. The validity and reliability of 
detecting CNVs will improve quickly as genotyping technology advances, which 
will support the required replication.

Keywords: Autoimmunity; Genetic variation; Genomewide; Association; Copy 
number variation

iNTrODUCTiON

Autoimmune diseases are mostly chronic and complex 
and arise when the immune system turns its antifor-
eign antigen defenses on normal healthy body compo-
nents, such as pancreatic β-cells in patients with type 1 
diabetes or myelin basic proteins in patients with mul-
tiple sclerosis [1-3]. Researchers have identified many 
genes responsible for autoimmune disorders during 
the last century. For example, since the first evidence 
supporting involvement of human leukocyte antigens 
(HLAs) in the pathogenesis of rheumatoid arthritis (RA) 

[4], the implications of HLA-DR4 subtypes are central 
knowledge, and HLA-DR genotyping is used wide-
ly to diagnose and treat RA. The association between 
HLA-B27 with ankylosing spondylitis (AS) remains the 
strongest compared with those of other common com-
plex diseases; people homozygous for HLA-B27 have an 
odds ratio (OR) of ~100 and those who are heterozygous 
have an OR of ~50 [5]. Many tolerance checkpoints ex-
ist in the immune system to prevent self-components 
from activating self-reactive lymphocytes. Therefore, 
multiple defects in genes and molecular pathways are 
required for an autoimmune disease to emerge through 
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bypassing these tolerance checkpoints. However, the 
mechanisms that contribute to disease pathogenesis 
are largely unknown.

Genetic variations, such as single nucleotide poly-
morphisms (SNPs), make each individual unique and 
determine our unique disease susceptibilities [6]. In 
addition, copy number variations (CNVs), which are ge-
netic variations resulting in a coding gene dosage vari-
ation, have been recently discovered. CNVs influence 
interindividual differences in the risk for a disease via 
several mechanisms that affect gene expression, such 
as gene disruption or rearrangement [7,8]. CNVs are 
measured by whole-genome microarray-based com-
parative genomic hybridization (array-CGH), whole-ge-
nome SNP arrays, or whole-genome sequencing. Ge-
nome-wide approaches to study genetic variations help 
discover new genes that influence susceptibilities to 
various diseases [9,10]. Indeed, genetic variants have 
been associated with autoimmune disorders [11-14], 
which is useful for understanding the pathogenesis and 
discovering new drug targets [15]. 

In this review, we focus on CNVs newly identified to 
be associated with autoimmune diseases through ge-
nome-wide association studies (GWASs) as well as target 
gene studies and discuss their clinical implications. 

COPY NUMBer vAriATiONS

what is a copy number variation?
Human genetic variations are the genetic sequence  
and/or structural differences within and among pop-
ulations. Many genetic variants do not cause overt 
diseases but influence disease susceptibility and drug 
response. Genomic structural variants have been con-
sidered background noise in conventional genetic stud-
ies because they are difficult to distinguish from exper-
imental errors or biases. Therefore, unverified genomic 
structural variants detected in the past were removed 
from the analysis. However, these variants drew atten-
tion of some scientists and have been recognized as 
genuine, novel genetic variations called CNVs [16-18].

CNVs are inherited or de novo structural variations, 
including all kinds of genomic variations > 1 kb, such 
as insertions, deletions, inversions, and translocations 
(Fig. 1) [19,20]. In total, 353,126 CNVs have been reported 
in the Database of Genomic Variants (http://dgv.tcag.ca/
dgv/app/home) as of October 2014. A study has estimat-
ed that ~68% of the human genome is covered by at least 
one CNV [21]. As 75.6% of exons and 91.2% of transcripts 
are overlapped by at least one CNV, CNVs could have 
significant biological implications [21]. The functional 

Figure 1. Different types of copy number variations (CNVs) and an example of genome-wide detection of CNVs. Upper plot 
illustrates relative deletion, duplication, and multiple segmental duplication of the “D” locus compared with the reference ge-
nome. Inversion of “C” and “D” loci is also illustrated. The lower plot shows an example of genome-wide CNV detection using 
oligoarray-comparative genomic hybridization. Red and blue arrows represent copy number gain- and loss-CNVs, respectively.
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consequences of CNVs include changes in protein ex-
pression levels and truncation or alterations in protein 
sequences.

Studies using next-generation sequencing (NGS) 
technology show that nonallelic homologous recombi-
nation and nonhomologous end joining are the major 
mechanisms forming CNVs, whereas a retrotransposi-
tion contributes only partially [22,23]. More than 99% 
of CNVs are inherited, whereas others are generated de 
novo during meiosis. Van Ommen [24] measured the 
frequency of de novo large-segment CNVs in human 
newborns and estimated that the frequency of segmen-
tal deletions is 1 in 8 and that of segmental duplications 
is 1 in 50. 

identifying copy number variations
CNVs are detected using blood- or tissue-extracted 
DNA. CNV detection methods are categorized into tar-
geted and genome-wide detection approaches [19,25]. 
Genome-wide approaches, in which the entire genome 

is scanned for CNVs, include microarray-based and 
NGS-based analyses (Fig. 2). Microarray-based analy-
ses are divided into two approaches of array-CGH and 
SNP array analyses. In array-CGH, DNA from two in-
dividuals (reference and test subjects) are labeled with 
different dyes and co-hybridized onto DNA array spots 
representing the entire genome (Fig. 2A) [26]. Relative 
copy number differences (gain or loss) are calculated 
using relative signal intensities (test/reference). Most 
array-CGH DNA arrays are oligonucleotide arrays com-
posed of ~70 oligomers specific for certain genomic 
locations across the entire genome. Identifying CNVs 
using SNP arrays is based on comparing signal intensi-
ty from whole-genome SNP genotyping data of a test in-
dividual with those of a reference group [27]. Whole-ge-
nome sequencing has facilitated the discovery of CNVs 
(Fig. 2B) [28,29]. NGS technology is used primarily to de-
tect single nucleotide variants (or small indels), where-
as NGS data can be an important resource to identify 
CNVs. Moreover, NGS data can be used to detect much 

Figure 2. Methods for genome-wide identification of copy number variations (CNVs). (A) Test and reference DNA samples 
are labeled with different fluorescent dyes (cyanine-3 and cyanine-5, respectively) to identify CNVs using array-comparative 
genomic hybridization (array-CGH). The mixture of labeled DNAs (reference and test) is hybridized onto the whole-genome 
microarray. Signal intensity ratios (cyanine-5/cyanione-3) are calculated after hybridization and image scanning and reveal 
the copy number differences between the test and reference genomes. (B) Test and reference DNA samples are sequenced inde-
pendently to identify CNVs using next-generation sequencing. The sequenced reads are mapped to the reference genome by 
sequence alignment. The number of mapped reads in each sliding window is counted. The mapped reads ratios (test mapped 
reads count/reference mapped reads count) reflect the copy number differences between the test and reference genomes.
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smaller CNVs and define CNV breakpoints more pre-
cisely. In particular, inversion and translocation, which 
cannot be identified precisely by either conventional 
cytogenetics or array-CGH approaches, are definable by 
NGS [30].

However, whole-genome CNV analyses may not be ef-
ficient for the validation or clinical translation of a rel-
atively small set of known CNVs. Targeted approaches 
are more efficient for that purpose. Approaches target-
ing CNVs include quantitative polymerase chain reac-
tion (qPCR) or Southern hybridization for single target 
screening and multiplex ligation-dependent probe am-
plification (MLPA), multiplex amplifiable probe hybrid-
ization, multiplex qPCR of short fluorescent fragments, 
or microsatellite genotyping for concurrent multi-
target analyses [19]. The multiplexing ability of MLPA 
makes it attractive for DNA copy number analyses [31]. 

However, MLPA has its own shortcomings. For exam-
ple, as MLPA depends on the length-based discrimina-
tion of the ligation products provided by capillary elec-
trophoresis, “stuffer” sequence elements of different 
sizes are required. Long stuffer elements have potential 
problems, such as nonspecific hybridization and non-
uniform amplification, which hinder widespread use of 
this technology. Shin et al. [32] developed a stuffer-free 
multiplex CNV detection method that combines the ad-
vantages of MLPA and capillary electrophoresis-strand 
conformation polymorphism to overcome these lim-
itations (Fig. 3). The emergence of user-friendly and re-
liable multiplex CNV identification technologies will 
facilitate CNV-based clinical research and clinical ap-
plication of the CNVs.

Figure 3. Multiplex ligation-dependent probe amplification (MLPA) technology for detecting copy number variations. (A) The 
amplified products are separated by conventional MLPA based on length differences in the “stuffer sequences.” The stuffer se-
quence, which is required to separate multiple amplicons using length-based capillary electrophoresis analysis, has potential 
problems such as nonspecific hybridization and nonuniform amplification. (B) Multiple targets can be specifically amplified 
with equal efficiency using stuffer-free MLPA by eliminating the stuffer sequence because the ligated probes are of similar 
size and the amplification uses common primers. RFU, relative fluorescence unit.
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COPY NUMBer vAriATiONS iN AUTOiMMUNe 
DiSOrDerS 

Genetic variation and human autoimmune disease
Autoimmune disorders can be caused by several differ-
ent mechanisms, including continuous stimulation of 
autoreactive lymphocytes by diverse self-antigens or in-
hibiting negative regulatory mechanisms for autoim-
mune lymphocyte growth. More than half of all antigen 
receptors generated by random V(D)J recombination 
recognize self-antigens [33]. The proliferation of auto-
immune lymphocytes induced by self-antigens is nor-
mally blocked by mechanisms that suppress antigen 
receptor signaling to activate transcription factors and 
signaling pathways. However, autoimmune disorders 
emerge if these mechanisms fail, and many studies 
have reported the genetic diversity in human autoim-
mune disorders. Selection and regulation of lympho-
cytes are controlled by cell-signaling events that may 
vary among individuals, which is likely due to genetic 
or epigenetic diversity [34].

Thanks to the advance of technologies, especially ge-
nome-wide approaches, more than 200 genetic loci or 
variants have been suggested to be associated with var-

ious autoimmune disorders [34]. Although the causal 
genes have not been identified, the existence of some 
genes associated with multiple autoimmune disor-
ders suggests that common pathways may exist among 
them. Genes within the major histocompatibility com-
plex (MHC) are most strongly associated with autoim-
mune diseases and other genes likely have smaller, reg-
ulatory effects [34].

Associations between CNvs and autoimmune dis-
eases
Several studies have reported associations between 
CNVs and various autoimmune diseases (Table 1). We 
review the major CNVs that are consistently associated 
with autoimmune disorders, although some inconsis-
tencies appear among reports due to technical limita-
tions, and not all of the suggested CNVs have been vali-
dated clearly through replicated studies. 

Complement component 4 
Complement component 4 (C4) is a complement sys-
tem protein consisting of > 30 proteins in plasma or on 
cell surfaces. The C4 gene resides in the MHC region as 
the C4A and C4B isotypes, both with copy numbers of 

Table 1. Copy number variant loci related to autoimmune diseases

CNV genes
Autoimmune 

diseases
Chromosome

position
Reference Comment

C4 SLE 6p21 [14,35-37] Replicated in Europeans and 
Asians. Not always significant

FCGR3B SLE/SLE-GN 
RA

1q23 [42-45]
[46,47]

Replicated, not always significant

CCL3L1 RA, SLE, T1DM, HIV, 
Kawasaki

17q21 [49-52] Not replicated

DEFB Psoriasis, CD 8p23 [56-60] Replicated, but sometimes 
contradictory

IRGM CD 5q33 [64,65] Ethnic group specific

VPREB1 RA 22q11 [68,69]

HHAT, HLA-DPB1, PRKRA, 
EEF1DP3, and 16p13.3 

AS [13] Combined CNV markers 
associated with AS

C4, RABGAP1L, and 10q21.3 SLE [14] Combined CNV markers 
associated with SLE

CNV, copy number variation; SLE-GN, systemic lupus erythematosus glomerulonephritis; RA, rheumatoid arthritis; T1DM, 
type 1 diabetes mellitus; HIV, human immunodeficiency virus; CD, Crohn’s disease; AS, ankylosing spondylitis. 
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2 to 6 [35]. Yang et al. [36] studied C4 gene CNVs in 1,241 
European and American patients with systemic lupus 
erythemoatosus (SLE), their first-degree relatives, and 
unrelated healthy controls and found that a low copy 
number of total C4 and C4A is associated with suscep-
tibility to SLE. This association was successfully rep-
licated in a study using 924 Han Chinese patients and 
1,007 controls [37]. Kim et al. [14] studied SLE-associated 
CNVs in East Asians using genome-wide analysis and 
reported a significant correlation between low C4 copy 
number and SLE in Korean women.

However, the correlation between low C4 copy num-
ber and the risk of SLE is not always significant. Boteva 
et al. [38] investigated the C4 CNV in two large cohorts 
consisting of 2,207 subjects of northern and southern 
European ancestry (1,028 SLE cases and 1,179 controls) 
to determine whether a partial C4 deficiency is an inde-
pendent risk factor for SLE. Multiple logistic regression 
was performed to control for the effects of well-known 
SLE-associated SNPs and risk alleles. They concluded 
that a genetically determined partial C4 deficiency is 
not an independent risk factor for SLE in either popu-
lation and that the association seems to be caused by an 
unknown causal variant located somewhere else in the 
high linkage disequilibrium region with C4 [38]. A low 
C4B copy number, however, has been associated with 
RA [39].

Fcγ receptor locus
Human Fcγ receptors (FCGRs) are glycoproteins that 
bind to the immunoglobulin G (IgG) Fc region. The 
FCGR genes that encode the FcγRs are located on chro-
mosome 1q23-24. Six classes of FCγ receptors (FcγRIA, 
FcγRIIB, FcγRIIA, FcγRIIC, FcγRIIIA, and FcγRIIIB) 
have been identified in humans [40]. Among them, Fcγ−
RIIIB is a functional modulator of neutrophil activa-
tion that controls IgG binding [41]. Aitman et al. [42] de-
tected a correlation between the FCGR3B CNV and SLE 
glomerulonephritis in United Kingdom (UK) families. 
A study of 161 SLE cases and 312 controls from the UK 
reported that individuals with less than two copies of 
the FCGR3B gene had a higher risk for SLE (OR, 2.43; p = 
0.001) [43]. Subsequent studies have consistently report-
ed a correlation between low FCGR3B copy number (< 2) 
and SLE [44,45].

However, this association is not consistent in patients 

with RA. One group reported a correlation between a 
FCGR3B CNV and RA in Caucasians [46]. Another study 
of 1,115 patients with RA and 654 controls also reported 
a correlation between low FCGR3B copy number and RA 
in Caucasians [47]. However, a third study on a popu-
lation with Spanish ancestry showed that the FCGR3B 
CNV is correlated with SLE but not with RA [44]. A re-
cent meta-analysis also showed that low FCGR3B copy 
number (< 2) is correlated with SLE, but not with RA [48]. 
These inconsistent findings could be due to different 
CNV analytical techniques or to the complex nature of 
RA.

Chemokine CC motif ligand 3 like-1
The chemokine CC motif ligand 3 like-1 (CCL3L1) pro-
tein binds to several proinflammatory cytokine recep-
tors such as chemokine receptor 5. The CCL3L1 CNV has 
been well studied in many immune diseases, including 
RA [49], human immunodeficiency virus infection [50], 
SLE [51], and Kawasaki disease [52], but the results are 
conflicting. McKinney et al. [49] assessed the associ-
ation of the CCL3L1 CNV with RA and type 1 diabetes 
mellitus (T1DM) susceptibility in Caucasians consist-
ing of 1,136 RA cases and 1,470 controls from New Zea-
land (NZ) and the UK. They found that copy number 
more than two was a risk factor for RA in the NZ cohort 
(OR, 1.34) but not in the smaller UK cohort. Evidence 
for an association was found in the T1DM cohort (OR, 
1.46) and in the combined RA/T1DM cohort (OR, 1.30). 
However, the Wellcome Trust Case Control Consor-
tium study found no evidence of an association between 
the CCL3L1 CNV and RA or T1DM in 2,000 cases of each 
trait and 3,000 shared controls [10]. Thus, one cannot 
conclude anything about the role of the CCL3L1 CNV in 
autoimmunity because issues exist regarding the reli-
ability of CNV detection assays, and the CCL3L1 locus is 
very complex.

β-Defensin 
β-Defensins are small peptides encoded by DEFB genes 
in three main clusters, including 8p23.1, 20p13, and 
20q11.1, which have antimicrobial activities against 
bacteria, fungi, and viruses [53]. They also have proin-
flammatory properties as chemotactic agents for den-
dritic cells, T cells, and neutrophils [54,55]. Hollox et al. 
[56] found that an increase in DEFB copy number was 
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significantly correlated with psoriasis in 190 Dutch 
cases and 303 controls. Impaired induction of the ep-
ithelial β-defensins is related to Crohn’s disease (CD), 
and defensins are underexpressed in patients with CD 
[57]. Fellermann et al. [58] hypothesized in 2006 that 
this result could be due to a low DEFB copy number and 
performed genome-wide DNA copy number profiling 
of the human β-defensin 2 (HBD-2) gene. They found 
that the copy number distribution in patients with 
CD was shifted to a lower number compared with the 
control group (median of four copies for healthy indi-
viduals and three copies for patients with colonic CD). 
They also found that a lower HBD-2 gene copy num-
ber was correlated with reduced expression of mucosal 
HBD-2 mRNA (p = 0.033) [58]. In 2010, Bentley et al. [59] 
tried to validate the findings of Fellermann et al. [58], 
which was the only report on the association between 
the DEFB CNV and CD in a larger case-control cohort 
of Europeans. However, the results were opposite to the 
previous report. As both studies used the same quan-
titative PCR assay, the discrepancy is unlikely to have 
been caused by differences in methodology. That pop-
ulation stratification caused the discrepancy is also 
unlikely, as both groups studied similar Caucasian sub-
jects. Bentley et al. [59] suggested that the false-positive 
findings in the study of Fellermann et al. [58] may have 
been due to the relatively small, phenotypically ill-de-
fined study population. About 1 year later, Aldhous et al. 
[60] tried to verify the relationship between the DEFB 
CNV and CD using a more accurate and reliable paral-
og ratio test in a larger study population consisting of 
1,000 UK CD cases and 500 controls. However, neither 
of the associations between high and low DEFB4 copy 
numbers and CD [58,59] were replicated [60]. Neverthe-
less, the possibility may still exist that the DEFB CNV 
is generally related to autoimmune disorders. A large 
study in two Chinese cohorts detected associations of 
increased DEFB4 copy number with SLE, and antineu-
trophil cytoplasmic antibody-associated small vasculi-
tis [61]. Thus, DEFB genes should be studied for their 
involvement in diverse autoimmune diseases in various 
populations.

Immunity-related GTPase family M 
The human immunity-related GTPase family M 
(IRGM) gene induces autophagy as a mechanism to 

remove intracellular mycobacteria [62], and an associ-
ation between SNPs near IRGM and CD was detected 
by a GWAS [63]. McCarroll et al. [64] examined the ex-
perimental data of 270 HapMap samples to assess the 
existence of common CNVs near IRGM and identified 
a common 20-kbp deletion located 2.7 kbp upstream of 
IRGM. They genotyped this deletion-CNV in 685 North 
American case-control samples and found an increased 
frequency of the CNV (allele frequency, 15%; OR, 1.6; p 
< 0.01), which has been proposed to be a likely causal 
variant [65]. However, a study in a Japanese population 
found no association between IRGM variants and CD, 
suggesting an influence of population stratification on 
the pathogenic effects [66]. One alternative explanation 
is that the causal variant at this locus arose after the Eu-
ropean-Asian split.

VPREB1
B-lymphocytes are key players in innate and adap-
tive immunity, and their impaired function can lead 
to autoimmune diseases [67]. Pre-B cell receptor (pre-
BCR), which is composed of VpreB and λ5, is involved 
in positive and negative selection of autoreactivity and 
shaping the B-cell repertoire [68]. Perturbation of the 
pre-BCR-mediated checkpoints can contribute to the 
development of autoimmune disorders. Yim et al. [69] 
reported that the VPREB1 CNV is associated with sus-
ceptibility to RA, observing that the proportion of in-
dividuals with less than two copies of the VPREB1 gene 
was significantly higher in the patient group than that 
in the controls. Similarly, the proportion of individu-
als with more than two copies was significantly lower in 
the patient group than that in the controls [69]. Consid-
ering the biological importance of pre-BCR on immu-
nity and the association between the VPREB1 CNV and 
RA, more studies based on larger samples may facilitate 
clinical translation of this CNV.

Combined effects of CNvs associated with autoim-
mune diseases
Although many CNVs have been associated with vari-
ous autoimmune diseases, the impact of a single CNV 
seems to be relatively small. However, a combination 
of multiple CNVs is logically expected to exert stronger 
effects on phenotypes. Kim et al. [14] reported that all 
C4, RABGAP1L, and 10q21.3 deletion variants are asso-
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ciated with the risk for SLE, with ORs of 1.0 to 1.3. No-
tably, individuals with deletion CNVs at all three loci 
had a 5.5 times higher risk for SLE than those who were 
diploid at all three loci, and individuals with deletion 
CNVs at two loci had a 1.78 times higher OR than those 
diploid at both loci [14]. This synergistic effect has also 
been observed in patients with AS. Jung et al. [13] report-
ed that five deletion CNVs of HHAT (1q32.2), HLA-DPB1 
(6p21.3), PRKRA (2q31.2), EEF1DP3 (13q13.1), and 16p13.3 
are associated with the risk for AS, and that the ORs 
were 1.5 to 2.1. However, individuals with deletion CNVs 
in four or more loci had an 18 times higher risk for AS 
than those being diploid in all five loci, and individuals 
with deletion CNVs at three and two loci had 12.2 and 
7.3 times higher ORs, respectively, than those of diploid 
subjects [13]. Combining CNV markers with multiplex 
CNV detection technology will facilitate CNV-based 
clinical research and application of the CNVs.

CONClUSiONS

Results from genomics studies can be used to catego-
rize diseases of previously unknown origin into auto-
immune diseases and help identify new pathogenic 
mechanisms for known diseases. We provide some 
insight into the associations between CNVs and auto-
immune diseases. First, we found that some CNV loci 
are commonly implicated in various autoimmune dis-
eases, such as Fcγ receptors in SLE and ITP and β-de-
fensin genes in psoriasis and CD. This observation 
suggests that some autoimmune diseases may share 
CNVs as common risk factors. Thus, when a CNV locus 
is associated with a particular autoimmune disease, its 
potential associations with other autoimmune diseases 
should be examined. Second, interpopulation or inter-
ethnic differences exist in the effects of CNVs on phe-
notypes including disease susceptibility. Thus, associ-
ations found in one population should be replicated in 
another population of interest to set up CNV databases 
containing information on significant CNVs in each 
population. Meaningful functional studies will follow 
only after reliable data on population-specific CNVs are 
produced, which can be and translated into clinical ap-
plications.

Although identifying the environmental compo-

nents that interact with host genetic factors is very 
important to properly understand autoimmunity and 
develop preventive and therapeutic measures, evidence 
suggests that CNVs are important clues to understand 
the susceptibility and pathogenesis of autoimmune 
diseases. However, many of the findings need to be 
replicated in independent populations or in different 
ethnic groups. The validity and reliability of detecting 
CNVs will improve quickly as genotyping technologies 
advance, which will support the required replication. In 
addition, combined interpretation of CNVs and other 
types of genetic variants may help us understand dis-
ease susceptibility and pathogenesis.
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