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Over the past decade, there has been a paradigm shift in how clinical data are 
collected, processed and utilized. Machine learning and artificial intelligence, 
fueled by breakthroughs in high-performance computing, data availability 
and algorithmic innovations, are paving the way to effective analyses of large, 
multi-dimensional collections of patient histories, laboratory results, treatments, 
and outcomes. In the new era of machine learning and predictive analytics, the 
impact on clinical decision-making in all clinical areas, including rheumatology, 
will be unprecedented. Here we provide a critical review of the machine-learning 
methods currently used in the analysis of clinical data, the advantages and lim-
itations of these methods, and how they can be leveraged within the field of rheu-
matology.
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INTRODUCTION

Machine learning (ML) is a field of computer science 
that aims to create predictive models from data. It 
makes use of algorithms, methods and processes to un-
cover latent associations within the data and to create 
descriptive, predictive or prescriptive tools that exploit 
those associations [1]. It is often related to data mining 
[2], pattern recognition [3], artificial intelligence (AI) [4], 
and deep learning (DL) [5]. Although there are no clear 
definitions or boundaries among these areas and they 
often overlap, it is generally agreed that DL is a more 
recent sub-field of ML that uses computationally inten-
sive algorithms and big data [6] to capture complex re-
lationships within the data. Using multi-layered artifi-
cial neural networks, DL has dramatically improved the 

state-of-the-art in a variety of applications, including 
speech and visual object recognition, machine transla-
tion, natural language processing, and text automation 
[5,7]. Similarly, AI is broader than ML in that it uses the 
latter as a prediction engine feeding decision support 
and recommendation systems that are more than the 
sum of their parts. AI has been around for more than 
70 years, born out of our appreciation and admiration 
of the power and inner workings of human intelligence 
[8]. Moreover, ML and AI are already part of our every-
day lives, as they underlie our web searches [9], e-mail 
anti-spam filters [10], hotel and airline bookings [11], 
language translators [12], targeted advertising [13], and 
many other services [14]. Lately, ML and AI have cap-
tured the world's imagination in applications involving 
various complex games, with one of the most celebrat-
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ed cases being the GO match held in 2016 between 
Sedol Lee, one of the top GO players in the world, and 
the computer program AlphaGo [5]. Fig. 1 provides a 
grouping of the different fields related to ML and AI.

The concept of ML dates to the 1940s but its devel-
opment since the 1990s has been rapidly accelerated 
by the confluence of four key factors: the digitalization 
and storage of a massive amount of high-dimensional 
data at low cost; the development of general and graph-
ic processors with high computational power; break-
throughs in ML algorithms that have significantly im-
proved performance and minimized errors; and the free 
availability of open-source tools, codes, and models. In 
a clinical setting, ML and AI tools can help physicians 
ton understand a disease better and more accurately 
evaluate patients’ status based on high-throughput mo-
lecular and imaging techniques, which at the same time 
reveal the complexity and heterogeneity of the disease 
[15-17]. Nonetheless, equal to the promise of ML/AI are 
the potential dangers that may arise if too much trust 
is placed in automated diagnosis and decision tools. As 
a cautionary tale, the concordance between IBM’s Wat-

son for Oncology [18] and an expert board of oncolo-
gists was highly variable, with a range of 17.8% to 97.9% 
depending on the tumor type, stage, hospital, and 
country [19]. Moreover, in recent news, the tool report-
edly recommended unsafe cancer treatment plans [20]. 
Therefore, a thorough understanding and judicious 
approaches to ML are required to ensure its reasonable 
use in research and clinical practice. This is especially 
apparent given the complex nature of medicine, which 
involves the interactive combination of clinical and bio-
logical features in disease manifestation and diagnosis; 
a continuous inflow of new medical tools and drugs; 
socio-economic factors, such as the permission to treat 
that must be obtained from insurance companies; drug 
regulation and release by the regulatory agencies of the 
various countries; and ethical issues dealing with the 
use of electronic medical records (EMRs).

Rheumatic diseases, including rheumatoid arthritis 
(RA), systemic lupus erythematosus, Sjögren’s syn-
drome, systemic sclerosis, idiopathic inflammatory 
myositis, and the systemic vasculitides, are chronic 
autoimmune inflammatory disorders with multi-or-
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gan involvement. Complex interactions between a 
multitude of environmental and genetic factors affect 
disease development and progression [21,22]. In view 
of their heterogeneity, most rheumatic diseases are not 
defined as a single entity but as a single group accord-
ing to established classification criteria [21,22]. Previous 
risk-prediction models for disease development and 
outcome based on population-wide databases work well 
on average, but in terms of precision medicine many 
of the diagnostic and management needs of patients 
with rheumatic diseases are still unmet [23,24]. In this 
setting, ML can suggest effective solutions for the un-
settled issues arising from complex and heterogeneous 
diseases such as rheumatic diseases [16]. ML applica-
tions in multi-omics datasets were examined in detail 
in a series of recent reviews [7,25-29], and the superb 
performance of DL in image analysis has been the focus 
of recent papers [30-33]. Here we review the core princi-
ples and processes of ML that are applicable to clinical 
medicine as well as the current use of ML in research 
on rheumatic diseases. Our aim is to help clinicians 
and rheumatologists to understand better the basics of 
ML and its relevant research applications.

THE BASICS OF MACHINE LEARNING

Differences from traditional statistical models
There are substantial differences between ML and tra-
ditional statistics. First, ML concentrates on the task 
of “prediction,” by using general-purpose learning 
algorithms to find patterns in often rich and unwieldy 
data. By contrast, statistical methods have a long-stand-
ing focus on inference, which is achieved through the 
creation and fitting of a project-specific probability 
model [34]. Second, most ML techniques are hypoth-
esis-free, as their aim is to reconstruct associations 
within the data, whereas traditional statistics usually 
rely on specific assumptions and hypotheses, often 
those stemming from the model that has generated the 
data [35]. Third, the toolsets used to evaluate the gen-
eralization errors of an ML model (receiver-operating 
characteristic curves, cross-validation, among others) 
are generally different from those of traditional statis-
tical techniques, which mostly rely on a calculation of 
the p value to reject a null hypothesis [34,36,37]. Fourth, 

traditional statistical modeling is generally fitted to 
produce the simplest, most parsimonious model and 
yields a result that is easy to understand and interpret. 
However, clinical and biological factors are usually not 
independent of each other and their associations may 
be non-linear. ML approaches, however, consider all 
possible interactions between variables according to 
multi-dimensional non-linear patterns, irrespective of 
the degree of complexity, while aggressively seeking to 
capture as many informative and interesting features 
as possible. Nonetheless, by the same token, this can 
produce a complicated and sophisticated model that 
is not easy to understand or interpret. Fifth, it is often 
the case that the results of clinical studies are not con-
sistent across studies, due to differences in the charac-
teristics of the study population, the sample size or the 
measured variables (number, scale, and method). This 
is partly because traditional models seek a goodness of 
fit in a set of study samples. By contrast, the fundamen-
tal goal of ML is to generalize beyond the examples in 
the training set. Generalization is feasible because the 
models derive from a much larger dataset, are then val-
idated in an independent dataset and further tuned to 
obtain the best performance [38,39].

Types of machine learning
There are many types of ML algorithms, as shown in 
Fig. 2. One of the most widely used categorizations 
separates them into three classes: supervised, unsuper-
vised, and reinforcement learning.

Supervised learning
Supervised learning searches for the relationship be-
tween a set of features (input variables) and one or more 
known outcomes (output classes or labels) and then de-
rives a function that predicts the output value for a set 
of unlabeled input values based on an acceptable degree 
of fidelity [17,36,37]. For supervised learning to work, 
the training data should have the correct input-output 
pairs, which should be labeled by experts. Supervised 
learning includes both classification, where the task 
is to predict the group or class to which a new sample 
should be assigned (hence the output is a discrete vari-
able), and regression, where the value of a continuous 
variable for a new sample must be estimated. For ex-
ample, to determine whether a set of clinical features 
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can predict the treatment response in patients with RA 
treated with a specific therapy, researchers can apply 
a supervised learning algorithm to a dataset in which 
each patient record contains the set of clinical features 
of interest and a label specifying the degree of disease 
responsiveness (e.g., “good,” “moderate,” “no” response, 
in conformity with the EULAR response criteria) [40]. 
Supervised learning algorithms include logistic and lin-
ear regression, naïve Bayesian classifiers, decision trees 
and random forests, support vector machines (SVMs), 
k-nearest neighbors, and neural networks [17,36,37].

Unsupervised learning
Unsupervised learning is a sub-field of ML that at-
tempts to identify the structure in the data without 
the need for a training set, classes, or labels [17,36,37]. 
In the medical field, an example would be to identi-
fy hidden subsets of patients with similar clinical or 
molecular characteristics as described in the data. For 
example, patients with diffuse-type systemic sclerosis 
can be further categorized as having inflammatory, fi-
broproliferative, or normal-like disease based on their 
skin’s molecular signature [41,42]. The significance of 
this additional grouping can be further evaluated by 
determining correlations with clinical features and 
performance in subsequent supervised learning tasks. 

Unsupervised learning algorithms include clustering 
methods such as hierarchical or k-means clustering, 
principal component analysis, t-distributed stochastic 
neighbor embedding (t-SNE), non-negative matrix fac-
torization, and latent class analysis [17,36,37,43].

Reinforcement learning
Reinforcement learning is an area of ML that is based 
on behavioral psychology, namely, how software agents 
take actions in a particular environment to maximize 
the cumulative reward [39]. The best example is game 
theory and the above-mentioned AlphaGo, which plac-
es a stone at a specific position on the board at a certain 
point in the game to maximize the winning rate [44]. A 
similar method was also used to select the best initial 
time for second-line therapy in patients with non-small 
cell lung cancer [45]. However, although it has great po-
tential, reinforcement learning is not often applied to 
clinical settings, as it needs rigorously defined clinical 
states, observations (vitals, lab results, among others), 
and actions (treatment) and rewards, which are quite 
difficult to define and are sometimes unknown.

Transfer learning
Transfer learning is the improvement of the learning 
of a new task through the transfer of knowledge from 
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a related task that has already been learned [46]. The 
assumption is that a model pre-trained in a dataset 
that has some similarities with the final dataset, i.e., 
the one that will ultimately be used for training, will 
perform better and be trained faster than if the model 
is exposed only to the latter. The two conditions under 
which this assumption holds true are: (1) the final data-
set is much smaller than what is dictated by both the 
task at hand and the complexity of the model and (2) 
the pre-training dataset and the final dataset have some 
commonalities that are informative for that task. For 
example, assume that a model is to be trained to recog-
nize black swans in images but only a few dozen images 
of swans of any kind are available; hence, the dataset is 
sufficient to train only the simplest of neural networks. 
In an alternative approach, large datasets comprising 
hundreds of thousands of images of birds in general 
can be substituted to pre-train the classifier to recog-
nize birds. This pre-trained “bird” classifier can then 
be taught, using the key informative features of a bird 
(feathers, wings, beak, etc.), to recognize black swans 
from other items, including other birds. In a more 
relevant study for clinicians, Lakhani and Sundaram 
[47] adopted two famous deep convolutional neural net-
work (DCNN) models for image classification, AlexNet 
[48] and GoogLeNet [49], pretrained on ImageNet [50], 
to differentiate pulmonary tuberculosis from the nor-
mal condition on a simple chest radiograph. DL with a 

DCNN accurately classified tuberculosis with an area 
under the curve (AUC) of 0.99.

SALIENT POINTS TO CONSIDER WHEN RUN-
NING MACHINE LEARNING

Medical or healthcare data can be presented in a table 
consisting of two components: rows of samples (obser-
vations or instances) and columns of features (variables 
or attributes). A schematic diagram of a supervised ML 
process is provided in Fig. 3. In data science, a pro-
grammed machine or model type is called a “learner.” 
In the following we discuss several points that should 
be kept in mind when ML is used.

Data quantity, quality, and their control
In ML, the data are of high dimensionality and the 
sample size is large, so-called Big Data. An exploration 
of each subgroup of the data can reveal hidden struc-
tures by extracting important common features across 
many subgroups even when there are large individual 
variations. This is not feasible when the sample size is 
small because outliers may be mistakenly identified 
[51]. However, Big Data, a term applicable to EMRs, are 
inevitably characterized by certain weaknesses [51-53]. 
High dimensionality brings noise accumulation, spu-
rious correlations, and incidental endogeneity [51]. In 
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addition, because the massive samples in Big Data are 
typically aggregated from multiple sources at different 
times using different technologies, issues of heteroge-
neity, experimental variation, and statistical bias arise. 
Medical data are no exception, as there are clear differ-
ences between the formats used in EMRs, laboratory 
instruments, scales, assay reagents, and laboratory data 
notation methods. Furthermore, clinical and laboratory 
elements are often recorded incompletely or according 
to the preference of the particular doctor and therefore 
differently. In fact, the accuracy, completeness and 
comparability of EMR data were shown to vary from 
element to element by 10% to 90% [54]. The same dis-
ease code may be differently defined depending on the 
updated criteria, and coding errors inevitably occur be-
cause for the most part humans perform the recording. 
According to the Korean National Health Insurance 
claims database, true RA made up 91.4% of the total RA 
disease codes based on the RA identification algorithm 
[55]. Hence, to handle these challenges, aggressive qual-
ity control is needed [56], including data cleansing and 
refining techniques, such as error correction, removal 
of outliers, missing data interpolation, normalization, 
standardization, and de-batching. However, these 
processes rely on expert human judgment. Since even 
complex and sophisticated algorithms will not produce 
good results if the quality of the input data is poor, 
refinement of input data to improve their quality will 
provide better results even if the algorithm is less than 
optimal [37,57]. As has often been noted: “garbage in, 
garbage out” [58].

Data preprocessing
Raw data are usually not in a structure that is conve-
nient for researchers to work with and not organized 
enough to be ready for ML. Data preprocessing refers 
to any transformation of the data before a learning al-
gorithm is applied. It includes example finding and re-
solving inconsistencies; imputation of missing values; 
identifying, removing, or replacing outliers; discretiz-
ing numerical data or generating numerical dummy 
variables for categorical data; dimensionality reduction; 
feature extraction/selection; and feature scaling (nor-
malization, standardization or Box-Cox transformation) 
[59]. Of these, feature scaling through standardization (or 
Z-score normalization) is an important preprocessing 

step for many ML algorithms. Predictor variables with 
ranges of different orders of magnitude can exert a dis-
proportionate influence on the results. In other words, 
in the context of an algorithm, predictor variables with 
a greater range of scale may dominate. The scaling of 
feature values implicitly ensures equal weights of all 
features in their representation and should be the ap-
plied preprocessing approach in ML algorithms such 
as linear regression, SVM, and k-nearest neighbors [37].

Training, validation, and test datasets
For ML, the data are usually split into training, valida-
tion, and test datasets. The training dataset is the data 
sample used to fit the model. The validation dataset is 
the data sample used to provide an unbiased evalua-
tion of a model fit on the training dataset while tuning 
model hyperparameters; it is regarded as a part of the 
training set. The test dataset is the data sample used 
to provide an unbiased evaluation of the fit that the fi-
nal model achieved with the training dataset [36,37,60]. 
If the categorical variables are unbalanced, stratified 
sampling is favored. When a large amount of data is 
available, each set of samples can be set aside. However, 
if the number of samples is insufficient, removing data 
reduces the amount available for training. This can be 
mitigated by the use of resampling methods such as 
cross-validation and bootstrapping [60,61]. In general, a 
repeated 10-fold cross validation is recommended be-
cause of the low bias and variance properties of the per-
formance estimate and the relatively low computational 
cost [37].

Bias-variance trade-off and overfitting
ML methods are often hindered by bias-variance 
trade-offs when a high-dimensional dataset with an 
inadequate number of samples is to be fitted [36,37,61]. 
Bias is the training error of the model; that is, the dif-
ference between the prediction value and the actual 
value. Models with a high bias tend to underfit, by ap-
plying a simpler model to describe a dataset of higher 
complexity. For example, if the goal is to capture the 
half-life relationship of protein degradation, a known 
non-linear process with exponential decay, the use of 
a linear model will not result in accurate prediction of 
protein levels at any time point, no matter how many 
training samples make up the dataset. By contrast, vari-
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ance expresses the sensitivity of the model to small per-
turbations in the input. A model of high variance will 
provide substantially different answers (output values) 
for small changes in the input, because of overfitting 
of its parameters to the training dataset at hand [61]. 
This prevents generalizations (and thus the ability of 
the model to perform well) to other datasets never seen 
by the model, i.e., those it has not been trained on. In 
general, variance increases and bias decreases with in-
creasing model complexity [36,62].

Many ML algorithms are susceptible to overfitting 
because they have a strong propensity to fit the model 
to the dataset and minimize the loss function as much 
as possible. Because the goal of ML is to make the mod-
el generalizable from learning the training data, and 
not to obtain the best model well-fitted for the training 
data, proper measures should be taken depending on 
the type of algorithm. The most popular solutions for 
overfitting are training with more data of high-quality 
and the least amount of noise, cross-validation, early 
stopping, pruning (remove features), regularization, and 
ensembling [36,37,61,63]. The appropriate combination 
should be selected depending on the purpose of the 
study, the characteristics and size of the dataset, and the 
learner type.

Feature engineering and selection
Since features describe the sample’s characteristics, 
more features imply a better understanding of the sam-
ple. However, in predictive modeling, too many fea-
tures can impede learning because some may be irrele-
vant to the target of interest, less important than others 
or redundant in the context of other features. A “curse 
of dimensionality” occurs when the dimensionality of 
the data increases and the sparsity of the data increases 
[61]. It is statistically advantageous to estimate fewer 
parameters. In addition, researchers usually want to 
know the key informative features obtained with a sim-
ple model rather than work with a complex model that 
uses a large number of features to predict the outcome. 
In truth, processes that make the refined data amenable 
to learning, such as data cleaning, preprocessing, fea-
ture engineering and selection, are more essential than 
running a learner. However, this is a daunting task 
because it is manually tailored by domain experts in a 
time-consuming process [61]. Feature engineering is the 

process of transforming raw data such that the revised 
features better represent the problem that is of interest 
to the predictive model, resulting in improved model 
performance on new data. An example is to transform 
the counts of tender and/or swollen joints and the 
erythrocyte sedimentation rate (ESR) into a single for-
mulated feature, Disease Activity Score (DAS28)-ESR, 
which better assesses disease activity in patients with 
RA. Feature selection is the process of selecting a subset 
of relevant features while pruning less-relevant features 
for use in model construction. There are three methods 
in feature selection algorithms: filter methods, wrap-
per methods, and embedded methods [37,64,65]. Filter 
methods involve the assignment of a score to each fea-
ture using a statistical measure followed by selection of 
high-ranked features based on the score. Filtering uses 
a preprocessing step and includes correlation coeffi-
cient scores, the pseudo-R2 statistic and information 
gain. Wrapper methods evaluate multiple models using 
procedures that add and/or remove predictors to find 
the optimal combination that maximizes model perfor-
mance. An example is the recursive feature elimination 
algorithm. Embedded methods perform variable selec-
tion in the process of training and are usually specific 
to certain learning machines. The most common type 
of embedded feature-selection method is the regular-
ization method found in LASSO, Elastic Net, and Ridge 
regression. The features selected from the methods 
do not necessarily have a causal relationship with the 
target label, but simply provide critical information for 
use in predictive model construction.

Limitations of machine learning
ML has become ubiquitous and indispensable for 
solving complex problems in most sciences [16]. It can 
present novel findings or reveal previously hidden 
but important features that have been missed or over-
looked in conventional studies using traditional statis-
tics. However, those features might also be irrelevant, 
nonsensical, counterposed to the framework of current 
medical knowledge, or even cause confusion. This is 
because the results returned by ML are based solely 
on the input data. ML does not call the input data into 
question or explain why the results were obtained or 
their underlying mechanism. In the event of unexpect-
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ed results, the data should be re-investigated to deter-
mine whether human or technical errors have created 
biases, followed by careful interpretation and validation 
in the context of the disease.

ML models are fairly dependent on the data they are 
trained on or are called upon to analyze, and no model, 
regardless of its sophistication, can create a useful anal-
ysis from low-quality data [61,66]. As data are a product 
made in the past and represent existing knowledge, ML 
models are valid within the same framework of that 
knowledge and their performance will degrade if they 
are not regularly updated using new, emerging data. In 
the case of a supervised classifier, a common problem 
is that the classes that make up the target label are not 
represented equally. An imbalanced distribution of 
class sizes across samples favors learning weighted to 
the larger class size such that the trained model then 
preferably assigns a major class label to new instances 
thereof while ignoring or misclassifying minority sam-
ples, which, although they rarely occur, might be very 
important. Several methods have been devised to han-
dle the imbalanced class issue [67,68].

Because the optimal algorithm, i.e., the one that best 
fits the data of interest, cannot be known beforehand, 
a reasonable strategy is to sequentially test simple and 
widely known learners before moving on to those that 
are more sophisticated and distinct. In some ML learn-
ers, hyperparameters should be tuned by exhaustively 
searching through a manually specified subset of the 
hyperparameter space of a learning algorithm [69]. 

Randomness is an inherit characteristic of ML appli-
cations [70], appearing in data collections, observation 
orders, weight assignments, and resampling, among 
others. To create stable, robust models with repro-
ducible results, detailed information on the type and 
version of the computational tools, learners’ parame-
ters, hyperparameters and random seed number used 
should always be reported [71].

ILLUSTRATIVE EXAMPLES OF MACHINE 
LEARNING

Several representative clinical studies in which ML 
methods were used in the area of internal medicine are 
summarized in Table 1 [72-86]. In the study of rheu-

matic diseases, ML has been employed only recently, 
but two of those studies are particularly noteworthy. In 
the first, Orange et al. [87] reported the identification of 
three distinct synovial subtypes based on the synovial 
gene signatures of patients with RA. These labels were 
used to design a histologic scoring algorithm in which 
the histologic scores correlated with clinical param-
eters such as ESR, C-reactive protein (CRP) level, and 
autoantibody titer [87]. The authors selected 14 histo-
logic features from 129 synovial samples (123 RA and six 
osteoarthritis [OA] patients) and the 500 most variably 
expressed genes in 45 synovial samples (from 39 RA and 
six OA patients). Gene-expression-driven subgroup-
ing was explored by k-means clustering, in which n 
objects are partitioned into k clusters, with each object 
belonging to the cluster with the nearest mean [88]. 
Clustering was most robust at 3 and this subgrouping 
was validated by principal component analysis, but not 
in an independent dataset. Three subgroups compris-
ing high-inflammatory, low-inflammatory, and mixed 
subtypes, were designated based on their gene patterns 
and enriched ontology. The aim of the study was to 
determine the synchrony between synovial histologic 
features and genomic subtype, thereby yielding a con-
venient histology-based approach to characterization of 
synovial tissue. To this end, a leave-one-out cross-val-
idation SVM classifier was implemented. The aim of 
an SVM is to find a decision hyperplane that separates 
data points of different classes with a maximal margin 
(i.e., the maximal distance to the nearest training data 
points) [89]. The model’s performance in separating 
both the high and the low inflammatory subtypes from 
the other subtypes was relatively good (AUCs of 0.88 
and 0.71, respectively). It should be noted that histolog-
ic subtypes are closely associated with clinical features, 
as significant increases in ESR, CRP levels, rheumatoid 
factor titer, and anti-cyclic citrullinated protein (CCP) 
titer in patients with high inflammatory scores were 
detected. However, this model might succumb to over-
fitting because SVM is vulnerable to overfitting [89,90], 
the sample size was too small (only 45 samples) and the 
model was not validated using an independent dataset. 
Moreover, the data samples were a mixture of RA and 
OA samples and there were no normal controls. SVM 
is an unsupervised ML with an efficient performance 
achieved using the kernel trick and the tuning of hy-
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Table 1. Representative clinical studies using machine learning methods in internal medicine

Area Title
Machine 
learning  
category

Machine learning 
methods

Input data Reference

Cardiology Identifying important 
risk factors for survival 
in patient with systolic 
heart failure using 
random survival forests

Supervised Random survival 
forest

39 Clinical variables
2,231 Adult patients with 
systolic heart failure

[72]

Cardiology Use of hundreds of 
electrocardiographic 
biomarkers for 
prediction of mortality in 
postmenopausal women: 
the Women's Health 
Initiative

Supervised Random survival 
forest

477 Electrocardiographic 
findings

33,144 Postmenopausal women

[73]

Cardiology Phenomapping for novel 
classification of heart 
failure with preserved 
ejection fraction

Unsupervised Agglomerative 
hierarchical 
clustering

67 Clinical and 
echocardiographic parameters

420 Patients with heart failure 
with preserved ejection 
fraction

[74]

Cardiology Machine learning for 
prediction of all-cause 
mortality in patients 
with suspected coronary 
artery disease: a 5-year 
multicentre prospective 
registry analysis

Supervised Logit-boost 
model

44 Coronary computed 
tomographic angiography 
variables and 25 clinical 
variables

10,030 Patients with suspected 
coronary artery disease

[75]

Pulmonology Unsupervised learning 
technique identifies 
bronchiectasis 
phenotypes with distinct 
clinical characteristics

Unsupervised Hierarchical 
clustering

78 Selected features from 
clinical, radiographic, and 
functional parameters

148 Patients with bronchiectasis

[76]

Gastroenterology Predicting hospitalization 
and outpatient 
corticosteroid use in 
inflammatory bowel 
disease patients using 
machine learning

Supervised Random forest Over 30 clinical and laboratory 
features

20,368 Patients with 
inflammatory bowel disease

[77]

Nephrology The development of 
a machine learning 
inpatient acute kidney 
injury prediction model

Supervised Gradient boosting 
machine

36 Clinical and laboratory 
features

121,158 Admissions 

[78]

Nephrology Using machine learning 
algorithms to predict 
risk for development of 
calciphylaxis in patients 
with chronic kidney 
disease

Supervised LASSO logistic 
regression

Random forest

9,288 Clinical and laboratory 
features

401 Patients with chronic 
kidney disease

[79]
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Area Title
Machine 
learning  
category

Machine learning 
methods

Input data Reference

Endocrinology A predictive metabolic 
signature for the 
transition from 
gestational diabetes 
mellitus to type 2 
diabetes

Supervised Decision tree (J48)
Naïve Bayes 
classifier

110 Blood metabolites
1,035 Women with gestational 
diabetes

[80]

Endocrinology Predictive models to 
assess risk of type 2 
diabetes, hypertension 
and comorbidity: 
machine-learning 
algorithms and 
validation using national 
health data from Kuwait. 
A cohort study

Supervised Logistic 
regression

k-Nearest 
neighbors

Support vector 
machines

Multifactor 
dimensionality 
reduction

13,647,408 Variables in medical 
records

300,489 Hospital visitors

[81]

Oncology Systematic analysis of 
breast cancer morphology 
uncovers stromal features 
associated with survival

Supervised LASSO logistic 
regression

6,642 Image features from 
H&E-stained histological 
images

Two independent sets of 
patients with breast cancer: 
NKI (248 patients) and VGH 
(328 patients)

[82]

Oncology Development of a 
prognostic model for 
breast cancer survival 
in an open challenge 
environment

Supervised
Unsupervised

Attractor 
metagenes 
analysis

Generalized 
boosted 
regression

k-Nearest 
neighbors

Clinical, survival information 
and 12 molecular features

1,981 Patients with breast 
cancer

[83]

Oncology Predicting non-small cell 
lung cancer prognosis 
by fully automated 
microscopic pathology 
image features

Supervised Naïve Bayes 
classifiers

Support vector 
machines

Random forest

9,879 Image features
2,186 H&E stained whole-slide 
histopathology images, which 
were obtained from 515 lung 
adenocarcinoma patients 
and 502 lung squamous cell 
carcinoma patients.

[84]

Hematology Prediction of allogeneic 
hematopoietic stem-
cell transplantation 
mortality 100 days after 
transplantation using 
a machine learning 
algorithm: a European 
group for blood and 
marrow transplantation 
acute leukemia working 
party retrospective data 
mining study

Supervised Alternating 
decision tree

18 Clinical features
28,236 Adult hematopoietic 
stem cell transplantation 
recipients who were affected by 
acute leukemia

[85]

Table 1. Continued
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perparameters. A better approach would be to specify 
the details of the model (kernel type, parameters, and 
hyperparameters) during method selection, to guaran-
tee the reliability and reproducibility of the model.

In the second, Lezcano-Valverde et al. [91] devel-
oped and validated a random survival forest (RSF) 
prediction model of mortality in RA patients based on 
demographic and clinically related variables. RSF, an 
extension of random forest for time-to-event data, is a 
non-parametric method that generates multiple deci-
sion trees using a bagging method [92,93]. Bagging, an 
abbreviation for bootstrap aggregation, is a simple and 
powerful ensemble method that fits multiple predic-
tive models on random subsets of the original dataset 
and aggregates their individual predictions by either 
voting or averaging [94]. It is commonly used to reduce 
variance and avoid overfitting. RSF is an attractive al-
ternative to the Cox proportional hazards model when 
the proportional hazards assumption is violated [93,95]. 
Lezcano-Valverde et al. [91] used two independent co-
horts as the training and validation datasets: the RA co-
hort from the Hospital Clínico San Carlos (HCSC-RAC), 
consisting of 1,461 patients, and the 280 RA patients 
from the Hospital Universitario de La Princesa Early 
Arthritis Register Longitudinal (PEARL) study. Each 
model was run 100 times using 1,000 trees per run. 
The prediction error was 0.187 in the training cohort 
and 0.233 in the validation cohort. Important variables 
with a higher predictive capacity were age at diagnosis, 
median ESR and number of hospital admissions. These 
variables were consistent with those obtained in a pre-
vious result using a Cox proportional hazards model 
[96]. The strengths of the approach described in that 
study were external validation using an independent 
RA cohort and the absence of a restrictive assumption, 

which traditional Cox proportional hazards model rely 
on. RSF has also been used to analyze the mortality risk 
in patients with systemic lupus erythematosus [97] and 
in those with juvenile idiopathic inflammatory myopa-
thies [98].

CONCLUSIONS 

ML algorithms can accommodate diverse configura-
tions of data, specify context weighting, and identify 
informative patterns that enable subgrouping or pre-
dictive modeling from every interaction of variables 
available for the assessment of diagnostic and prognos-
tic elements. Extensive, in-depth applications of ML 
in biomedical science are increasing in number, and 
interesting results in the area of precision medicine 
have been obtained. However, several challenges must 
still be overcome. First, ML works only if the training 
data are representative of the problem to be solved, 
include informative features and are of sufficient quan-
tity to train the model at hand. This can be difficult 
to achieve for both technical and real-world reasons. 
Second, privacy is a major concern in the collection of 
sensitive clinical data, which might limit the aggrega-
tion of all necessary information. Moreover, some data 
are expensive to acquire, reported in different formats 
and obtained using different methods and technol-
ogies. Third, because text-based medical records can 
be incoherent, distracted, and contain technical errors 
[52,53], expert human judgement is needed to review 
the data, detect any errors or problems and determine 
the clinical significance of any findings [35,99]. Finally, 
a consensus should be reached on how to integrate 
and coordinate ML results with previously established 

Area Title
Machine 
learning  
category

Machine learning 
methods

Input data Reference

Dermatology Dermatologist-level 
classification of skin 
cancer with deep neural 
networks

Supervised Deep 
convolutional 
neural network

129,450 Clinical images of skin 
lesions, which were labeled 
with 2,032 various skin disease

[86]

LASSO, least absolute shrinkage and selection operator; NKI, Netherlands Cancer Institute; VGH, Gancouver General Hospital.

Table 1. Continued

www.kjim.org


719

Kim KJ and Tagkopoulos I. Machine learning in rheumatology

www.kjim.orghttps://doi.org/10.3904/kjim.2018.349

guidelines or recommendations that were based on tra-
ditional statistics.

ML and AI will change the clinical landscape as we 
know it. From clinical decision support tools and per-
sonalized recommendation systems to the discovery of 
novel drugs and treatments, AI is poised to propel our 
world to unprecedented levels of automation, person-
alized service and accelerated R&D cycles. Close collab-
oration and interdisciplinary teamwork between clini-
cians, biomedical informatics scientists, ML experts, 
and administrative stakeholders are a prerequisite to 
the achievement of satisfactory solutions amenable to a 
variety of clinical applications.
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