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Due to the complex structure and function of the kidneys, the mechanism of 
kidney disease is unclear. In particular, transcriptomics approaches at the bulk 
level are unable to differentiate primary autonomous responses, which lead to 
disease development, from secondary cell non-autonomous responses. Single-cell 
analysis techniques can overcome the limitations inherent in the measurement 
of heterogeneous cell populations and clarify the central issues in kidney biology 
and disease pathogenesis. Single-cell sequencing helps in identifying disease-re-
lated biomarkers and pathways, stratifying patients, and deciding on appropriate 
treatment methods. Here we review a variety of single-cell analysis techniques 
and single-cell transcriptomics studies performed in the field of nephrology. 
Moreover, we discuss the future prospects of single-cell analysis-based precision 
medicine in nephrology.
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Single-cell transcriptomics: a novel precision 
medicine technique in nephrology
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INTRODUCTION

Defining the regulatory mechanisms that determine 
cell function and behavior is fundamental for under-
standing disease. However, due to the complex struc-
ture and function of the kidneys, the mechanisms 
governing the development and progression of kidney 
disease are unclear. Although RNA sequencing has en-
hanced our understanding of the causes and progress of 
kidney diseases, the bulk transcriptome does not allow 
analysis of biological differences between cell types. To 
overcome this, single-cell RNA sequencing (scRNA-seq) 
was developed. scRNA-seq involves single-cell isolation, 
transcript capture, library construction, sequencing, 
and computational analysis, and enables evaluation of 
the biological properties of individual cells and cell pop-
ulations at high resolution. It is a powerful approach to 
analyzing not only the complex processes of kidney dis-
eases but also the underlying causal mechanisms, facili-
tating identification of therapeutic targets.

Precision medicine characterizes patients based on 
information on all factors that can affect treatment, 
from dysregulation of genes and cells to lifestyle, diet, 
and environment. Precision medicine aims to identify 
biomarkers of treatment success more rapidly than the 
standard determination. Second, it identifies pathways 
for therapeutic intervention using existing pharmaco-
logical or novel target specific agents [1]. Identification 
of specific target genes, signaling pathways, and primary 
target cell types is needed to enable precision medicine 
in nephrology. Although much effort has focused on 
identifying target genes, cellular targets in kidney dis-
eases are unclear because of technical limitations.

Application of scRNA-seq can facilitate precision 
medicine by defining the cell types involved in com-
plex conditions such as chronic kidney disease (CKD) 
and acute kidney injury (AKI). Moreover, scRNA-seq can 
identify potential biomarkers and signaling pathways to 
enable diagnosis, prognosis evaluation, targeted thera-
py, early detection, and noninvasive monitoring (Fig. 1). 
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Therefore, scRNA-seq can realize precision medicine in 
nephrology. Here we review several single-cell analysis 
techniques and scRNA-seq studies of the kidneys. More-
over, we discuss the application of single-cell analysis to 
precision medicine in nephrology.

Single-cell analysis can be performed on kidney biop-
sies, blood, and urine and has high resolution that al-
lows observation of disease transitions at the single-cell 
level. Single-cell transcriptomics will assist identifica-
tion of disease-related biomarkers and pathways. This 
will enable more accurate classification of patients and 
administration of tailored treatments.

METHODOLOGICAL OVERVIEW

Sample preparation for single-cell analysis
There are several experimental considerations for 
scRNAseq such as tissue preservation, tissue dissocia-
tion, and cell count.

Obtaining high-quality single-cell suspensions is a 

key determinant of the success of single-cell studies. 
The single-cell preparation process is the most frequent 
cause of unwanted technical variation and batch effects 
in single-cell studies. To obtain a single-cell suspension 
from kidney samples, fresh tissue is dissociated by me-
chanical disruption and enzymatic digestion. An auto-
matic tissue dissociator is typically used to minimize 
batch effects. Because different tissues have different 
characteristics, the protocol must be optimized for each 
purpose. Excessive tissue dissociation causes cell dam-
age and reduces viability, which can result in unwanted 
transcriptional changes, ambient mRNAs, and great-
er amounts of mitochondrial mRNAs [2,3]. In contrast, 
insufficient tissue dissociation leads to multiplets in 
the data. In addition, a single-cell suspension obtained 
by tissue dissociation should be filtered through a cell 
strainer of appropriate size or immersed in cell debris 
removal solution. Cell counting is also critical because 
use of an excessive cell density can result in capture of 
multiple cells simultaneously. In contrast, underload-
ing can cause loss of information due to empty drop-

Figure 1. Application of single-cell transcriptomics to precision medicine for kidney diseases.
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lets. Multiplets can be removed using computation-
al tools such as Scrublet and DoubletFinder [4,5]. It is 
also important to determine the appropriate number 
of cells to be analyzed, which requires consideration of 
sample heterogeneity and abundance of the target cell 
type. A large number of cells must be sequenced to an-
alyze small populations of renal cells (20,000 cells are 
required to obtain 100 target cells if the target cell type 
frequency is 0.5%), as approximately 60% of the kidney 
is composed of proximal tubule cells [6].

scRNA-seq analysis is hindered by difficulties in iso-
lating cells or if cells are damaged. Single nucleus RNA 
sequencing (snRNA-seq) overcomes these limitations by 
isolating a single nucleus rather than a single-cell [7,8]. 
Although scRNA-seq requires fresh tissue, snRNA-seq 
can be performed on frozen tissue, and can be applied 
to tissues that are difficult to separate because of inter-
twined cells [8]. Furthermore, snRNA-seq reduces cell 
stress and the composition bias generated during the 
separation step. Nevertheless, information on cytoplas-
mic RNA cannot be obtained because only nuclear RNAs 
are analyzed, and various intron sequences are present. 
Therefore, the method used should be selected based on 
the aim of the experiment.

Single RNA sequencing technologies
scRNA-seq methods typically involve RNA capture, reverse 
transcription, complementary DNA (cDNA) amplification, 
sequencing library construction, and high-throughput se-
quencing.

scRNA-seq is mainly divided into full-length scRNA-
seq and tag-based scRNA-seq according to library con-
struction method. Full-length scRNA-seq can be uti-
lized not only to measure gene expression levels but 
also to identify transcript isoforms, alternative splicing, 
and single-nucleotide polymorphisms within the tran-
scripts [9-12]. It has high sequencing coverage and map-
ping efficiency; however, it has limited cell through-
put (hundreds of cells), a relatively large batch effect, 
considerable sample preparation time, and high cost 
per cell because the samples must be prepared inde-
pendently [9,13-15]. Smart-seq2 and Quartz-seq are rep-
resentative full-length scRNA-seq methods [16,17]. The 
tag-based scRNA-seq technique estimates transcript 
abundance by sequencing the 3′-end of transcripts in 
a large number of cells (tens of thousands to millions 

of cells) [9,13,18,19]. To distinguish cell types and to de-
termine the transcript copy number accurately, cDNA 
molecules are labeled with barcode sequences such as 
cell barcodes and unique molecular identifiers (UMIs). 
Tag-based scRNA-seq is subdivided into droplet-based 
[19-21], microwell-based [22,23], and split-pool barcod-
ing-based technologies [24,25], according to the labeling 
method. Droplet-based technology uses a microfluidic 
device to generate aqueous droplets formed by combin-
ing water and oil streams. In each droplet, one cell and 
one barcoded bead pair are encapsulated, and each sin-
gle-cell mRNA is captured by oligo-dT of the barcoded 
bead. During cDNA synthesis, cell barcodes and UMIs 
are added to the cDNAs [19-21]. Although droplet-based 
barcoding generates limited information on the 3′-end 
of the mRNA, it improves the throughput of single-cell 
analysis and reduces the time, labor, cost per cell, and 
batch effect by simplifying the experimental procedure. 
Microwell-based technology captures mRNA by loading 
cells on a microwell plate, washing doublets with cap-
illaries, and adding barcoded beads [22,23]; it is simple 
and economical. Split-pool barcode methods identify a 
single-cell by combinatorial indexing without the need 
for separation to obtain a single-cell. Single-cell com-
binatorial indexing RNA sequencing (sci-RNA-seq) and 
split-pool ligation-based transcriptome sequencing 
(SPLiT-seq) are typical split-pool barcoding methods 
[24,25]. These techniques distribute permeabilized cells 
across 96- or 384-well plates; the first molecular index is 
introduced to the mRNA of cells in each well, with in situ 
reverse transcription. After the first barcoding, the cells 
are pooled, and the cells are distributed across another 
plate. Thereafter, a second barcode is added, resulting 
in a unique combination of barcodes for each cell [24,25].

Another challenge of scRNA-seq is the loss of cell 
location and orientation information during tissue 
dissociation. Much effort has focused on recreating a 
near-realistic cell environment. Because cells exist in a 
three-dimensional (3D) space and interact within that 
space, spatial transcriptome analysis was developed to 
evaluate cell types and their locations. Single-molecule 
fluorescence in situ hybridization (smFISH) was used 
to identify RNA location and copy number; however, it 
cannot analyze multiple cells simultaneously [26,27]. To 
overcome this limitation, multiplexed error robust FISH 
(MERFISH), which involves labeling of multiple RNAs 
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in a single-cell, and sequential-FISH (seq-FISH), which 
involves multiple rounds of FISH, have been developed 
[28,29]. In addition, spatially resolved transcript ampl-
icon readout mapping, which labels RNA with a DNA 
probe, and fluorescent in situ sequencing, which over-
comes the shortcomings of existing padlock probes, are 
available [30,31]. Visium, a spatial transcriptomics tech-
nology from 10× Genomics, provides a multidimension-
al view of tissue biology by means of high-throughput 
mRNA analysis of intact tissue sections [32]. Computing 
technologies such as Seurat, DistMap, and novoSpaRc 
are also evolving [33-35], and efforts are focused on un-
derstanding the functions of cells in 3D space.

scRNA-seq has several limitations that need to be 
overcome. For example, dissociation may cause stress or 
alter the cell proportion [2,36]. Also, the batch effect may 
result from use of different protocols, sample handling, 
and platforms [37,38]. In addition, the transcript efficien-
cy per cell is lower compared to bulk RNA-seq [39,40]. 
Finally, dropout occurs with droplet-based scRNA-seq 
[20,21,41].

Computational analysis of scRNA-seq data
The raw data generated by sequencing are processed 
using analysis pipelines such as Cell Ranger [21], SEQC 
[42], and zUMIs [43] to a gene-by-cell data matrix.

Quality control filters select only high-quality cells, 
facilitating identification of cell type, and screening of 
failed samples so that their data can be recovered or re-
moved from analysis. This requires generation of quali-
ty metrics such as the number of UMIs per cell, number 
of genes detected per cell, and proportion of mitochon-
drial genes [44-46].

Normalization is essential for accurate comparison of 
gene expression between samples. Because the gene ex-
pression count depth of the same cells can vary due to 
the diversity inherent in each step—such as single-cell 
capture, reverse transcription, and sequencing—the 
gene expression counts are scaled by the total number 
of sequencing reads or counts per cell [45,47,48].

After normalization, clustering analysis is performed 
to separate the cells based on gene expression patterns 
and identify the cell types. The Seurat package allo-
cates cells to clusters based on the principal component 
scores obtained from the expression of the most vari-
able genes [49,50]. For visualization of the cell clusters, 

t-distributed stochastic neighbor embedding and uni-
form manifold approximation and projection are typi-
cally performed [51,52]. The identified clusters are then 
assigned into known cell types based on cell type-spe-
cific markers or by automatic cell assignment software. 
There are several cell-marker databases for cell type 
classification, such as Cell Finder [53], CellMarker [54], 
and PanglaoDB [55]. Despite marker-based cell type clas-
sification being commonly used, these methods cannot 
distinguish other cell types that express the same mark-
er from the target cell type, and can complicate cell type 
classificaition by the heterogeneity of cell states. The 
various automated cluster annotation methods combine 
annotation and clustering, and the automatic cell iden-
tification methods are compared elsewhere [56]. Down-
stream analyses—such as trajectory analysis, differential 
expression analysis, gene set analysis, and gene regula-
tory networks—have been reviewed by others [45,47,57].

Integration of single-cell transcriptomics with other 
-omics data
Single-cell sequencing enables simultaneous analysis of 
the genome, epigenome, transcriptome, and proteome 
of one cell. By integrating genomic and transcriptomic 
information, it is possible to confirm the effect of DNA 
copy number variation on gene expression, transcript 
changes according to genomic changes, and the effect 
of mutations in the coding or non-coding region on 
transcript expression [58]. Genome and transcriptome 
sequencing (G&T-seq) combines whole-genome ampli-
fication and Smart-seq2 [59]. Single-cell methylome and 
transcriptome (scM and T-seq) was developed to ana-
lyze the relationship between DNA methylation and the 
transcriptome in a single-cell [60,61].

Moreover, technologies that integrate chromatin in-
formation and the transcriptome are now available. Sin-
gle-cell combinatorial indexing-chromatin accessibility 
and mRNA (sci-CAR) integrates single-cell transcrip-
tome analysis (sci-RNA-seq) and epigenetic analysis (sci-
ATAC-seq) [62]. This allows assessment of the relation-
ships between differentially expressed genes and their 
regulatory chromatin regions.

RNA and protein determine the properties of a biolog-
ical system; however, because of the distinct half-lives 
of mRNA and protein, and the effects of post-transcrip-
tional modification, it is difficult to evaluate the correla-
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tion between mRNA and protein levels [58]. Simultane-
ous identification of the transcriptome and proteome at 
the single-cell level has enabled exploration of RNA and 
protein abundance. Cellular indexing of transcriptomes 
and epitope sequencing (CITE-seq) and RNA expression 
and protein sequencing (REAP-seq) enables simultane-
ous analysis of proteins and transcripts at the single-cell 
level using oligonucleotide-labeled antibodies, and can 
detect proteins barcoded into multiple antibodies and 
more than 20,000 genes [63,64].

Several techniques unaffected by cellular heteroge-
neity have been developed to overcome the limitations 
of single transcriptome studies. Single-cell multiomics 
techniques can distinguish subtypes of cells from het-
erogeneous cell populations [65-67]. In addition, the ac-
curacy of lineage trajectory analysis can be enhanced by 
integrating gene expression and the epigenetic changes 
that occur during cell division and delivery to daughter 
cells [68]. Single-cell multiomics data can reveal correla-
tions between different -omics data, and presumably, 
may effectively reveal the causal relationship between 
-omics and technology development.

APPROACHES AND UTILITY OF SINGLE-CELL 
TRANSCRIPTOMICS IN NEPHROLOGY

Kidney single-cell atlas
Several scRNA-seq studies of human and mouse dis-
eased and normal kidneys have been conducted; the 
results were applied to produce a variety of databases 
(Table 1).

The creation of a single-cell atlas offers several ad-
vantages. First, by typing differentiated cells, their stage 
of development and differentiation can be determined. 
Second, it provides insight into the mechanisms of dis-
ease development and progression. By analyzing dis-
eased tissue at the single-cell level and comparing it 
with the cell atlas of healthy tissue, it is possible to eval-
uate the heterogeneity of cells in the diseased tissue and 
so determine the cause of the disease. Analyzing single 
cells in diseased tissues can identify the factors that con-
tribute to differences between individuals, allowing per-
sonalized treatment and facilitating the development of 
new drugs and biomarkers.

Park et al. [6] constructed a cell atlas using scRNA-seq 

data of 57,979 cells from healthy mouse kidneys. They 
identified 18 kidney epithelial and immune cell types 
as well as novel transitional cell types located between 
intercalated cells (ICs) and principal cells (PCs) in the 
collecting ducts. Moreover, they revealed that Notch 
signaling is responsible for the transition of ICs to PCs. 
Karaiskos et al. [69] performed single-cell profiling of 
mouse glomerulus cells. They identified glomerular cell 
types such as podocytes, mesangial cells, and endothe-
lial cells. They also revealed novel marker genes for all 
glomerular cell types and assessed the transcriptional 
heterogeneity of each cell type via subclustering the en-
dothelial cells and podocytes. Chen et al. [70] performed 
scRNA-seq on mouse collecting duct cells. Ransick et 
al. [71] anatomically dissected male and female kidneys 
for anatomy-guided scRNA-seq. They confirmed sexual, 
spatial, and temporal diversity in nephrons and the col-
lecting system.

Liao et al. [72] identified 10 normal human cell clusters 
via scRNA-seq of 23,366 kidney cells from three human 
donors. Proximal tubule cells and collecting duct cells 
were classified into three and two subtypes, respective-
ly. For gene expression profiling of human fetal kidney 
development, Wang et al. [73] applied scRNA-seq to 3,543 
renal cells spanning several embryonic stages and clas-
sified the major cell types. Moreover, they identified two 
subpopulations in the cap mesenchyme and assessed 
the molecular heterogeneity of the cap mesenchyme. 
Furthermore, they identified the transcription factors 
and signaling pathways involved in nephron tubule 
segmentation during fetal kidney development. Wu et 
al. [74] performed scRNA-seq of human kidney allograft 
biopsy samples and confirmed the proinflammatory re-
sponse of allograft rejection by comparison with healthy 
kidney epithelial transcriptomes. Understanding the 
characteristics and origins of organ-specific tumors is 
crucial for making treatment decisions. Young et al. [75] 
performed single-cell profiling of human renal tumors 
and normal tissue from pediatric and adult kidneys. 
They confirmed that Wilms tumor, a pediatric kidney 
cancer, was derived from abnormal fetal cells. The or-
igin of the tumor was predicted by matching the tran-
scriptome of adult kidney cancer to a specific subtype 
of proximal convoluted tubular cells. Lake et al. [7] op-
timized the snRNA-seq pipeline for clinical specimens 
to define the molecular transition states of more than 
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10 nephron segments in the proximal tubules and col-
lecting ducts. Using the results they described the an-
atomical nephron organization, providing a starting 
point for building a molecular and physiological atlas 
that can be used to identify variations in kidney diseases. 
Stewart et al. [76] evaluated the spatiotemporal immune 
topology in human kidneys by scRNA-seq. scRNA-seq of 

mature and fetal kidneys revealed the asymmetric dis-
tribution of immune cells, and the contribution of each 
cell type based on the nephrogenesis stage was analyzed. 
This kidney immune cell atlas provides insight into the 
pathogenetic mechanisms and therapeutic targets in 
immune and infectious kidney diseases. 

Single-cell studies of human and mouse kidneys have 

Table 1. Single-cell analysis databases

Definition Resource Target disease Species
Cell 

number
Platform

Single-cell atlas from healthy 
mouse kidneys [6]

http://susztaklab.com/sc Normal Mouse 57,979 10× Genomics

Single-cell atlas of the mouse 
glomeruli [69]

https://shiny.mdc-berlin.de/
mgsca/

Normal Mouse ~13,000 Drop-seq

Single-cell RNA sequencing for 
each collecting duct type [70]

https://hpcwebapps.cit.nih.
gov/ESBL/Database/scRNA-
Seq/alpha-fraction.html 

Normal Mouse 235 Fluidigm C1

Profiling kidney cell by lineage, 
gender, zonation [71]

https://cello.shinyapps.io/
kidneycellexplorer/ 

Normal Mouse 31,265 10× Genomics

Single-cell RNA sequencing of 
human kidney [72]

Normal Human 23,366 10× Genomics

Profiling of human kidney 
development by single-cell RNA 
sequencing [73]

Kidney 
development

Human ~3,000 STRT-seq

Inflammatory response in 
transplantation kidney [74]

http://humphreyslab.com/
SingleCell/

Transplantation Human 4,487 InDrops

Single nucleus RNA sequencing of 
human kidney [7]

Normal Human 17,659 
(nuclei)

Drop-seq

Single-cell atlas of the human 
kidney’s immune system from 
mature and fetal kidneys [76]

https://www.kidneycellatlas.
org/ 

Normal Human 67,471 10× Genomics

Human kidney cell atlas by Mux-
seq [77]

Normal Human 45,000 10× Genomics

Single-cell RNA sequencing from 
patients with lupus nephritis [78]

Lupus nephritis Human 4,019 Fluidigm C1

Kidney immune cell profiling by 
single-cell RNA sequencing in 
patients with lupus nephritis [79]

https://immunogenomics.io/
ampsle/

Lupus nephritis Human 8,455 CEL-seq2

Single-cell atlas of the human 
diabetes kidney [80]

http://humphreyslab.com/
SingleCell/

Diabetes Human 23,980 
(nuclei)

10× Genomics

Single-cell RNA sequencing of 
mouse glomeruli with diabetes [81]

Diabetes Mouse 644 Fluidigm C1

Single-cell RNA sequencing from 
UUO mouse model [82]

https://argonaut.is.ed.ac.uk/
shiny/katie.connor/mac_
shiny/ 

UUO Mouse 25,381 10× 
Genomics, 

SMART-seq2

UUO, unilateral ureteric obstruction.
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shown the complexity of kidney tissues; however, some 
scRNA-seq studies missed known cell subtypes. This 
is because sample preparation, dissociation, and batch 
effects influence the detection of rare or sensitive cells. 
A multiplex approach to droplet snRNA-seq (Mux-seq) 
was applied to minimize batch variation [77]. This allows 
scRNA-seq of several human biopsies simultaneously, 
enabling identification of kidney cell populations in 
health and disease.

Single-cell analysis of kidney diseases
scRNA-seq of the kidneys of patients with lupus nephri-
tis (LN) has been reported. Der et al. [78] reported that 
the type 1 interferon response in tubular epithelial cells 
was greater than that in healthy controls, and confirmed 
clinically relevant disease signatures in kidney and skin 
biopsies. Arazi et al. [79] performed scRNA-seq of the kid-
ney tissues of patients with LN and healthy controls, and 
found that leukocytes in the kidney were active and that 
their activation status differed before and after the in-
flammatory reaction. Subgroups of innate and adaptive 
immune cells expressing various transcription factors 
related to systemic lupus erythematous were identified 
by analyzing cluster-specific expression of risk-related 
genes in genome-wide association studies. scRNA-seq 
of LN tissues confirmed the molecular signature asso-
ciated with prognosis, enabling improvement of patient 
care and stratification.

Transcriptome profiling of kidney tissue or isolat-
ed glomeruli provides insight into the pathogenesis of 
kidney fibrosis. Wilson et al. [80] performed snRNA-seq 
using 23,980 nuclei from control and diabetic kidney 
cortex samples, and found gene expression changes in 
diabetic glomeruli, mesangial cells, endothelial cells, 
and diabetic proximal convoluted tubules and ascend-
ing limbs. In addition, differential expression of li-
gand-receptors was observed in the various glomerular 
cell types. Differential expression analysis of leukocytes 
revealed that infiltrating immune cells contribute to the 
synthesis of kidney risk inflammatory signature mark-
ers. Such gene expression changes may enable identifi-
cation of biomarkers and signaling pathways early in di-
abetic nephropathy. To evaluate the mechanism of early 
diabetic kidney disease, Fu et al. [81] performed scRNA-
seq of kidney glomerular cells in a diabetic mouse mod-
el. They identified five distinct cell clusters and novel 

glomerular cell-specific markers. Comparison of the 
scRNA-seq data between diabetic and normal mouse 
kidneys revealed identical cell clusters, but the immune 
cell population was increased in diabetic mice. More-
over, there were remarkable gene expression changes in 
endothelial and mesangial cells in the diabetic mouse 
kidney. These analyses identified key factors involved 
in diabetic kidney disease progression and thereby as-
sisted development of new treatment approaches [81]. 
Using the reversible unilateral ureteric obstruction 
model (R-UUO), changes in renal injury and repair at 
the single-cell level were noted [82]. scRNA-seq revealed 
myeloid cell heterogeneity in damaged and recovering 
kidneys by identifying new monocyte and macrophage 
subsets not observed in the kidney [82]. The data will en-
able identification of potential therapeutic targets and 
the development of therapeutics for kidney diseases.

Intratumoral heterogeneity interferes with mark-
er-based cancer treatment because targeted therapy 
removes only a specific population of tumor cells. To 
evaluate the molecular and cellular heterogeneity in re-
nal cell carcinoma, Kim et al. [83] performed transcrip-
tome profiling of primary and metastatic renal cell car-
cinoma with single-cell resolution. Metastatic cancer 
cells exhibited distinct gene expression patterns with 
increased metastatic and aggressive signatures com-
pared to primary cancer cells. Based on transcriptome 
profiling and drug screening, the drug sensitivity and 
activation status of signaling pathways were predicted, 
and the correlation between the predicted signature and 
measured data was verified. sci-RNA-seq allows identifi-
cation of cell subsets with active signaling pathways and 
selection of the most effective drug combination. Such 
approaches will overcome the intratumoral heteroge-
neity that hampers precision medicine. The immune 
cells of the tumor microenvironment (TME) are crucial 
in determining the response to cancer immunotherapy. 
Nevertheless, the role of immune cells in clear cell renal 
cell carcinoma (ccRCC) is unclear, and most patients do 
not respond to these treatments. Vishwakarma et al. [84] 
applied scRNA-seq to the tumors and peripheral blood 
immune cells from patients with ccRCC to character-
ize the TME. They identified several intratumoral CD8  
T cell states that characterize the effector, memory, and 
exhausted subpopulations together with multiple states 
of tumor-associated macrophages and dendritic cells. 
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Moreover, they found intratumoral cytotoxic and reg-
ulatory CD4 T cell clusters, which led to the establish-
ment of tumor-infiltrating effectors and memory cells. 
These results will facilitate research on TME to identify 
new therapeutic targets and biomarkers.

APPLICATION OF SINGLE-CELL ANALYSIS IN 
PRECISION MEDICINE

Single-cell analysis accelerates research on diseases 
related to genetic or epigenetic alterations. Single-cell 
analysis has been applied in microbiology, immunolo-
gy, neurology, and oncology and has the potential to im-
prove diagnostics, prognostics, targeted therapy, early 
detection, and noninvasive monitoring [85].

Existing drug screening methods provide only rough 
readouts such as cell survival, proliferation, altered cell 
morphology, or specific molecular findings revealing 
whether a specific enzyme is blocked. Therefore, most 
assays miss the cell-state changes or subtle changes in 
gene expression that can reveal intracellular mecha-
nisms. In addition, it may not be possible to detect un-
expected side effects of a drug or different responses of 
genetically identical cells. During drug development, 
single-cell sequencing provides detailed information 
based on the genetic, epigenetic, and transcriptomic 
profiles of responders compared to nonresponders, and 
can improve efficiency [86]. Srivatsan et al. [87] intro-
duced sci-Plex (single-cell combinatorial indexing RNA-
seq for multiplex transcriptomics), which combines 
nuclear hashing and conventional sci-RNA-seq to quan-
tify the global transcriptional responses to independent 
perturbations with single-cell resolution. Sci-Plex can 
distinguish the effect of a drug on a cellular subset and 
can reveal the heterogeneity of the cellular response to 
perturbation. Furthermore, it is possible to measure 
changes in the relative proportions of a subset of distinct 
cells. Shin et al. [40] developed a multiplexed scRNA-seq 
method for profiling multiple experimental conditions, 
and evaluated its ability to perform single-cell transcrip-
tome profiling for multiple drugs. The results showed 
that each drug had a unique transcriptome response 
and gene expression signature at the single-cell level. 
The method can be applied to screening drugs and their 
transcriptional responses in a high-throughput man-

ner. Kim et al. [83] performed drug screening for renal 
cell carcinoma based on sci-RNA-seq. They identified 
cellular subpopulations with active signaling pathways 
and combinations of drugs that eliminate cancer cells 
[83]. This allows assessment of the heterogeneous cellu-
lar pattern of diseases, facilitating drug screening.

Immunotherapy shows promise for treating diseases 
at advanced stages. Much progress has been made in the 
development of cancer immunotherapies. Single-cell 
sequencing will help in understanding tumor heteroge-
neity and highlight the need for this technique to devel-
op safe and effective treatments. For instance, Krieg et 
al. [88] analyzed immune cell subsets at the single-cell 
level in the peripheral blood of patients before and after 
treatment to investigate the immune signature related 
to the response to anti-programmed cell death protein-1 
(anti-PD-1) immunotherapy. Using scRNA-seq, Kim et 
al. [89] reported that the concentration of exhausting 
induction factors that cause T cells to lose their poten-
cy against abnormal cells can predict patient-specific 
reactions to cancer immunotherapy. Chimeric antigen 
receptors (CAR) are genetically modified to give T cells 
the ability to target specific proteins. CAR T cell ther-
apy uses modified T cells to target and destroy cancer 
cells. Suarez et al. [90] designed a new CAR therapy tar-
geting carbonic anhydrase (CAIX) to prevent T cells ex-
haustion. Anti-CAIX-CAR T cells secreting anti-PD-L1 
reduced T cells exhaustion and improved the efficacy of 
CAR T cells treatment for ccRCC in vivo. Sheih et al. [91] 
performed scRNA-seq on CD8+ CAR T cells from pa-
tients receiving CAR T cells immunotherapy and from 
the infusion product. scRNA-seq can provide insight 
into the in vivo behavior of CAR T cells after adoptive 
transfer and may enhance CAR T cells immunotherapy.

Single-cell analysis is enabling precision medicine in 
oncology; however, precision medicine in nephrology 
lags that in other fields. Insight into immune mecha-
nisms is critical for developing precision medicine for 
kidney disease [92]. To identify the key elements, the 
immune cell heterogeneity of tissue samples can be re-
solved by single-cell analysis. A previous study assessed 
the human kidney spatiotemporal immune topology at 
the single-cell level [76], providing a description of the 
renal immune system and facilitating diagnosis and 
treatment of kidney diseases. Furthermore, single-cell 
multiomics analysis enables evaluation of disease-caus-

www.kjim.org


487

Kim J and Park J. Single-cell transcriptomics

www.kjim.orghttps://doi.org/10.3904/kjim.2020.415

ing factors and their interactions, overcoming the lim-
itations of single-omics data. Therefore, single-cell 
analysis will contribute to the development of precision 
medicine in nephrology (Fig. 1).

CONCLUSIONS

Precision medicine is a new medical approach that takes 
into account genetic variability, environment, and life-
style. Based on specific genetic biomarkers and -omics 
approaches, precision medicine has had a remarkable 
influence on, for instance, renal cancer and acute and 
chronic kidney diseases. Precision medicine differs 
from the one-size-fits-all approach, which does not con-
sider individual differences. Identifying specific target 
genes, critical signaling pathways, and cell types is the 
first step in the transition from conventional to preci-
sion medicine in nephrology. In contrast to identify-
ing target genes, little effort has focused on identifying 
cellular targets in kidney disease because of technical 
limitations. Moreover, bulk approaches cannot differ-
entiate primary cell autonomous responses, which lead 
to disease development, from secondary cell non-auton-
omous responses. scRNA-seq is an innovative approach 
and plays a pivotal role in precision medicine by en-
abling characterization of the cells, pathways, and genes 
involved in disease pathogenesis.

sci-RNA-seq can reveal new biological processes by 
combining multiple datasets, allowing a detailed de-
scription of the state of a single-cell. Multiomics ap-
proaches have been used to characterize disease states 
and identify therapeutic targets or biomarkers for kid-
ney diseases. A variety of single-cell sequencing technol-
ogies is capable of analyzing the genome, epigenome, 
proteome, and transcriptome of a single-cell. Single-cell 
sequencing technologies enable simultaneous genomic, 
epigenomic, transcriptomic, and proteomic analyses of 
the same cell.

Integrative single-cell transcriptome data will pro-
mote untangling of the complex pathological mecha-
nisms of kidney diseases and allow assessment of dis-
ease risk and monitoring of disease status, thus enabling 
personalized medicine.

Conflict of interest
No potential conflict of interest relevant to this article 
was reported.

Acknowledgments
This work was supported by “Global University Project 
(GUP),” “GIST Research Institute (GRI),” and “GIST Re-
search Institute (GRI) IIBR” grants funded by the GIST 
in 2020.

REFERENCES

1. Wyatt CM, Schlondorff D. Precision medicine comes of 
age in nephrology: identification of novel biomarkers 
and therapeutic targets for chronic kidney disease. Kid-
ney Int 2016;89:734-737. 

2. Denisenko E, Guo BB, Jones M, et al. Systematic assess-
ment of tissue dissociation and storage biases in sin-
gle-cell and single-nucleus RNA-seq workflows. Genome 
Biol 2020;21:130. 

3. Nguyen QH, Pervolarakis N, Nee K, Kessenbrock K. Ex-
perimental considerations for single-cell RNA sequenc-
ing approaches. Front Cell Dev Biol 2018;6:108. 

4. Wolock SL, Lopez R, Klein AM. Scrublet: computational 
identification of cell doublets in single-cell transcrip-
tomic data. Cell Syst 2019;8:281-291.

5. McGinnis CS, Murrow LM, Gartner ZJ. DoubletFinder: 
doublet detection in single-cell RNA sequencing data us-
ing artificial nearest neighbors. Cell Syst 2019;8:329-337.

6. Park J, Shrestha R, Qiu C, et al. Single-cell transcriptom-
ics of the mouse kidney reveals potential cellular targets 
of kidney disease. Science 2018;360:758-763. 

7. Lake BB, Chen S, Hoshi M, et al. A single-nucleus 
RNA-sequencing pipeline to decipher the molecular 
anatomy and pathophysiology of human kidneys. Nat 
Commun 2019;10:2832. 

8. Wu H, Kirita Y, Donnelly EL, Humphreys BD. Advantag-
es of single-nucleus over single-cell RNA sequencing of 
adult kidney: rare cell types and novel cell states revealed 
in fibrosis. J Am Soc Nephrol 2019;30:23-32. 

9. Ziegenhain C, Vieth B, Parekh S, et al. Comparative anal-
ysis of single-cell RNA sequencing methods. Mol Cell 
2017;65:631-643. 

10. Deng Q, Ramskold D, Reinius B, Sandberg R. Single-cell 
RNA-seq reveals dynamic, random monoallelic gene ex-

www.kjim.org


488 www.kjim.org https://doi.org/10.3904/kjim.2020.415

The Korean Journal of Internal Medicine Vol. 36, No. 3, May 2021

pression in mammalian cells. Science 2014;343:193-196. 
11. Reinius B, Mold JE, Ramskold D, et al. Analysis of allelic 

expression patterns in clonal somatic cells by single-cell 
RNA-seq. Nat Genet 2016;48:1430-1435. 

12. Tseng E, Underwood JG. Single-cell full-length iso-
form characterization using SMRT sequencing: Pacific 
Biosciences’ Iso-Seq method produces highly accurate 
long reads that can be used in combination with short-
read RNA-seq approaches. Genet Eng Biotechnol News 
2020;40:58-60.

13. Song Y, Xu X, Wang W, Tian T, Zhu Z, Yang C. Single cell 
transcriptomics: moving towards multi-omics. Analyst 
2019;144:3172-3189. 

14. Ramskold D, Luo S, Wang YC, et al. Full-length mR-
NA-Seq from single-cell levels of RNA and individual 
circulating tumor cells. Nat Biotechnol 2012;30:777-782. 

15. Hayashi T, Ozaki H, Sasagawa Y, Umeda M, Danno H, 
Nikaido I. Single-cell full-length total RNA sequencing 
uncovers dynamics of recursive splicing and enhancer 
RNAs. Nat Commun 2018;9:619. 

16. Picelli S, Bjorklund AK, Faridani OR, Sagasser S, Win-
berg G, Sandberg R. Smart-seq2 for sensitive full-length 
transcriptome profiling in single cells. Nat Methods 
2013;10:1096-1098. 

17. Sasagawa Y, Nikaido I, Hayashi T, et al. Quartz-Seq: a 
highly reproducible and sensitive single-cell RNA se-
quencing method, reveals non-genetic gene-expression 
heterogeneity. Genome Biol 2013;14:R31. 

18. Hashimshony T, Senderovich N, Avital G, et al. CEL-Seq2: 
sensitive highly-multiplexed single-cell RNA-Seq. Ge-
nome Biol 2016;17:77. 

19. Macosko EZ, Basu A, Satija R, et al. Highly parallel ge-
nome-wide expression profiling of individual cells using 
nanoliter droplets. Cell 2015;161:1202-1214.

20. Klein AM, Mazutis L, Akartuna I, et al. Droplet barcod-
ing for single-cell transcriptomics applied to embryonic 
stem cells. Cell 2015;161:1187-1201. 

21. Zheng GX, Terry JM, Belgrader P, et al. Massively parallel 
digital transcriptional profiling of single cells. Nat Com-
mun 2017;8:14049. 

22. Han X, Wang R, Zhou Y, et al. Mapping the mouse cell 
atlas by Microwell-Seq. Cell 2018;172:1091-1107. 

23. Gierahn TM, Wadsworth MH 2nd, Hughes TK, et al. Seq-
Well: portable, low-cost RNA sequencing of single cells at 
high throughput. Nat Methods 2017;14:395-398. 

24. Cao J, Packer JS, Ramani V, et al. Comprehensive sin-

gle-cell transcriptional profiling of a multicellular organ-
ism. Science 2017;357:661-667. 

25. Rosenberg AB, Roco CM, Muscat RA, et al. Single-cell 
profiling of the developing mouse brain and spinal cord 
with split-pool barcoding. Science 2018;360:176-182. 

26. Femino AM, Fay FS, Fogarty K, Singer RH. Visualization 
of single RNA transcripts in situ. Science 1998;280:585-
590. 

27. Raj A, van den Bogaard P, Rifkin SA, van Oudenaarden A, 
Tyagi S. Imaging individual mRNA molecules using mul-
tiple singly labeled probes. Nat Methods 2008;5:877-879. 

28. Eng CL, Lawson M, Zhu Q, et al. Transcriptome-scale su-
per-resolved imaging in tissues by RNA seqFISH. Nature 
2019;568:235-239. 

29. Wang G, Moffitt JR, Zhuang X. Multiplexed imaging of 
high-density libraries of RNAs with MERFISH and ex-
pansion microscopy. Sci Rep 2018;8:4847.

30. Wang X, Allen WE, Wright MA, et al. Three-dimensional 
intact-tissue sequencing of single-cell transcriptional 
states. Science 2018;361:eaat5691. 

31. Lee JH, Daugharthy ER, Scheiman J, et al. Fluorescent 
in situ sequencing (FISSEQ) of RNA for gene expres-
sion profiling in intact cells and tissues. Nat Protoc 
2015;10:442-458. 

32. Stahl PL, Salmen F, Vickovic S, et al. Visualization and 
analysis of gene expression in tissue sections by spatial 
transcriptomics. Science 2016;353:78-82. 

33. Nitzan M, Karaiskos N, Friedman N, Rajewsky N. Gene 
expression cartography. Nature 2019;576:132-137. 

34. Karaiskos N, Wahle P, Alles J, et al. The drosophila em-
bryo at single-cell transcriptome resolution. Science 
2017;358:194-199. 

35. Satija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial 
reconstruction of single-cell gene expression data. Nat 
Biotechnol 2015;33:495-502.

36. van den Brink SC, Sage F, Vertesy A, et al. Single-cell se-
quencing reveals dissociation-induced gene expression 
in tissue subpopulations. Nat Methods 2017;14:935-936. 

37. Chen W, Zhang S, Williams J, et al. A comparison of meth-
ods accounting for batch effects in differential expression 
analysis of UMI count based single cell RNA sequencing. 
Comput Struct Biotechnol J 2020;18:861-873. 

38. Tran HTN, Ang KS, Chevrier M, et al. A benchmark of 
batch-effect correction methods for single-cell RNA se-
quencing data. Genome Biol 2020;21:12. 

39. Stoeckius M, Zheng S, Houck-Loomis B, et al. Cell hash-

www.kjim.org


489

Kim J and Park J. Single-cell transcriptomics

www.kjim.orghttps://doi.org/10.3904/kjim.2020.415

ing with barcoded antibodies enables multiplexing and 
doublet detection for single cell genomics. Genome Biol 
2018;19:224.

40. Shin D, Lee W, Lee JH, Bang D. Multiplexed single-cell 
RNA-seq via transient barcoding for simultaneous ex-
pression profiling of various drug perturbations. Sci Adv 
2019;5:eaav2249. 

41. Zilionis R, Nainys J, Veres A, et al. Single-cell barcoding 
and sequencing using droplet microfluidics. Nat Protoc 
2017;12:44-73. 

42. Azizi E, Carr AJ, Plitas G, et al. Single-cell map of diverse 
immune phenotypes in the breast tumor microenviron-
ment. Cell 2018;174:1293-1308.

43. Parekh S, Ziegenhain C, Vieth B, Enard W, Hellmann I. 
zUMIs: a fast and flexible pipeline to process RNA se-
quencing data with UMIs. Gigascience 2018;7:giy059. 

44. AlJanahi AA, Danielsen M, Dunbar CE. An introduction 
to the analysis of single-cell RNA-sequencing data. Mol 
Ther Methods Clin Dev 2018;10:189-196. 

45. Luecken MD, Theis FJ. Current best practices in single-cell 
RNA-seq analysis: a tutorial. Mol Syst Biol 2019;15:e8746. 

46. McCarthy DJ, Campbell KR, Lun AT, Wills QF. Scater: 
pre-processing, quality control, normalization and visu-
alization of single-cell RNA-seq data in R. Bioinformatics 
2017;33:1179-1186. 

47. Hwang B, Lee JH, Bang D. Single-cell RNA sequencing 
technologies and bioinformatics pipelines. Exp Mol Med 
2018;50:96. 

48. Lun AT, Bach K, Marioni JC. Pooling across cells to nor-
malize single-cell RNA sequencing data with many zero 
counts. Genome Biol 2016;17:75. 

49. Peyvandipour A, Shafi A, Saberian N, Draghici S. Iden-
tification of cell types from single cell data using stable 
clustering. Sci Rep 2020;10:12349. 

50. Townes FW, Hicks SC, Aryee MJ, Irizarry RA. Feature se-
lection and dimension reduction for single-cell RNA-Seq 
based on a multinomial model. Genome Biol 2019;20:295. 

51. van der Maaten L, Hinton G. Visualizing data using 
t-SNE. J Mach Learn Res 2008;9:2579-2605.

52. Becht E, McInnes L, Healy J, et al. Dimensionality reduc-
tion for visualizing single-cell data using UMAP. Nat Bio-
technol 2019;37:38-44.

53. Stachelscheid H, Seltmann S, Lekschas F, et al. CellFind-
er: a cell data repository. Nucleic Acids Res 2014;42(Data-
base issue):D950-D958. 

54. Zhang X, Lan Y, Xu J, et al. CellMarker: a manually curated 

resource of cell markers in human and mouse. Nucleic 
Acids Res 2019;47:D721-D728. 

55. Franzen O, Gan LM, Bjorkegren JLM. PanglaoDB: 
a web server for exploration of mouse and human 
single-cell RNA sequencing data. Database (Oxford) 
2019;2019:baz046. 

56. Abdelaal T, Michielsen L, Cats D, et al. A comparison of 
automatic cell identification methods for single-cell RNA 
sequencing data. Genome Biol 2019;20:194. 

57. Lafzi A, Moutinho C, Picelli S, Heyn H. Tutorial: guide-
lines for the experimental design of single-cell RNA se-
quencing studies. Nat Protoc 2018;13:2742-2757. 

58. Macaulay IC, Ponting CP, Voet T. Single-cell multiomics: 
multiple measurements from single cells. Trends Genet 
2017;33:155-168. 

59. Macaulay IC, Haerty W, Kumar P, et al. G&T-seq: parallel 
sequencing of single-cell genomes and transcriptomes. 
Nat Methods 2015;12:519-522. 

60. Angermueller C, Clark SJ, Lee HJ, et al. Parallel single-cell 
sequencing links transcriptional and epigenetic hetero-
geneity. Nat Methods 2016;13:229-232. 

61. Hu Y, Huang K, An Q, et al. Simultaneous profiling of 
transcriptome and DNA methylome from a single cell. 
Genome Biol 2016;17:88. 

62. Cao J, Cusanovich DA, Ramani V, et al. Joint profiling of 
chromatin accessibility and gene expression in thou-
sands of single cells. Science 2018;361:1380-1385. 

63. Peterson VM, Zhang KX, Kumar N, et al. Multiplexed 
quantification of proteins and transcripts in single cells. 
Nat Biotechnol 2017;35:936-939. 

64. Stoeckius M, Hafemeister C, Stephenson W, et al. Simul-
taneous epitope and transcriptome measurement in sin-
gle cells. Nat Methods 2017;14:865-868. 

65. Luo C, Keown CL, Kurihara L, et al. Single-cell meth-
ylomes identify neuronal subtypes and regulatory ele-
ments in mammalian cortex. Science 2017;357:600-604. 

66. Tang X, Huang Y, Lei J, Luo H, Zhu X. The single-cell se-
quencing: new developments and medical applications. 
Cell Biosci 2019;9:53. 

67. Ortega MA, Poirion O, Zhu X, et al. Using single-cell mul-
tiple omics approaches to resolve tumor heterogeneity. 
Clin Transl Med 2017;6:46. 

68. Hu Y, An Q, Sheu K, Trejo B, Fan S, Guo Y. Single cell 
multi-omics technology: methodology and application. 
Front Cell Dev Biol 2018;6:28.

69. Karaiskos N, Rahmatollahi M, Boltengagen A, et al. A sin-

www.kjim.org


490 www.kjim.org https://doi.org/10.3904/kjim.2020.415

The Korean Journal of Internal Medicine Vol. 36, No. 3, May 2021

gle-cell transcriptome atlas of the mouse glomerulus. J 
Am Soc Nephrol 2018;29:2060-2068. 

70. Chen L, Lee JW, Chou CL, et al. Transcriptomes of 
major renal collecting duct cell types in mouse iden-
tified by single-cell RNA-seq. Proc Natl Acad Sci U S A 
2017;114:E9989-E9998. 

71. Ransick A, Lindstrom NO, Liu J, et al. Single-cell profiling 
reveals sex, lineage, and regional diversity in the mouse 
kidney. Dev Cell 2019;51:399-413.

72. Liao J, Yu Z, Chen Y, et al. Single-cell RNA sequencing of 
human kidney. Sci Data 2020;7:4. 

73. Wang P, Chen Y, Yong J, et al. Dissecting the global 
dynamic molecular profiles of human fetal kidney de-
velopment by single-cell RNA sequencing. Cell Rep 
2018;24:3554-3567.

74. Wu H, Malone AF, Donnelly EL, et al. Single-cell tran-
scriptomics of a human kidney allograft biopsy speci-
men defines a diverse inflammatory response. J Am Soc 
Nephrol 2018;29:2069-2080. 

75. Young MD, Mitchell TJ, Vieira Braga FA, et al. Single-cell 
transcriptomes from human kidneys reveal the cellular 
identity of renal tumors. Science 2018;361:594-599. 

76. Stewart BJ, Ferdinand JR, Young MD, et al. Spatiotem-
poral immune zonation of the human kidney. Science 
2019;365:1461-1466.

77. Schroeder AW, Sur S, Rashmi P, et al. Novel human kid-
ney cell subsets identified by Mux-Seq. Transplantation 
2020;104(Suppl 3):S85.

78. Der E, Suryawanshi H, Morozov P, et al. Tubular cell and 
keratinocyte single-cell transcriptomics applied to lupus 
nephritis reveal type I IFN and fibrosis relevant pathways. 
Nat Immunol 2019;20:915-927. 

79. Arazi A, Rao DA, Berthier CC, et al. The immune cell 
landscape in kidneys of patients with lupus nephritis. 
Nat Immunol 2019;20:902-914. 

80. Wilson PC, Wu H, Kirita Y, et al. The single-cell transcrip-
tomic landscape of early human diabetic nephropathy. 
Proc Natl Acad Sci U S A 2019;116:19619-19625.

81. Fu J, Akat KM, Sun Z, et al. Single-cell RNA profiling of 
glomerular cells shows dynamic changes in experimental 

diabetic kidney disease. J Am Soc Nephrol 2019;30:533-545.
82. Conway BR, O’Sullivan ED, Cairns C, et al. Kidney sin-

gle-cell atlas reveals myeloid heterogeneity in progres-
sion and regression of kidney disease. J Am Soc Nephrol 
2020;31:2833-2854.

83. Kim KT, Lee HW, Lee HO, et al. Application of single-cell 
RNA sequencing in optimizing a combinatorial thera-
peutic strategy in metastatic renal cell carcinoma. Ge-
nome Biol 2016;17:80. 

84. Vishwakarma A, Bocherding N, Chimenti MS, et al. Map-
ping the immune landscape of clear cell renal cell carci-
noma by single-cell RNA-seq. bioRxiv 2019 Oct 31. https://
doi.org/10.1101/824482.

85. Wiedmeier JE, Noel P, Lin W, Von Hoff DD, Han H. Sin-
gle-cell sequencing in precision medicine. Cancer Treat 
Res 2019;178:237-252.

86. Xu X, Hou Y, Yin X, et al. Single-cell exome sequencing 
reveals single-nucleotide mutation characteristics of a 
kidney tumor. Cell 2012;148:886-895. 

87. Srivatsan SR, McFaline-Figueroa JL, Ramani V, et al. Mas-
sively multiplex chemical transcriptomics at single-cell 
resolution. Science 2020;367:45-51. 

88. Krieg C, Nowicka M, Guglietta S, et al. High-dimensional 
single-cell analysis predicts response to anti-PD-1 immu-
notherapy. Nat Med 2018;24:144-153.

89. Kim K, Park S, Park SY, et al. Single-cell transcriptome 
analysis reveals TOX as a promoting factor for T cell ex-
haustion and a predictor for anti-PD-1 responses in hu-
man cancer. Genome Med 2020;12:22. 

90. Suarez ER, Chang de K, Sun J, et al. Chimeric antigen 
receptor T cells secreting anti-PD-L1 antibodies more 
effectively regress renal cell carcinoma in a humanized 
mouse model. Oncotarget 2016;7:34341-34355. 

91. Sheih A, Voillet V, Hanafi LA, et al. Clonal kinetics and 
single-cell transcriptional profiling of CAR-T cells in 
patients undergoing CD19 CAR-T immunotherapy. Nat 
Commun 2020;11:219. 

92. Kurts C, Panzer U, Anders HJ, Rees AJ. The immune sys-
tem and kidney disease: basic concepts and clinical im-
plications. Nat Rev Immunol 2013;13:738-753. 

www.kjim.org

